
/=.,

Computer

Technical

Science

Report

Experiments in Fault Tolerant
Software Reliability

Report 5 -- NAG-I-667

April 1, 1989

David F .McAllister - Mladen A. Vouk

North Carolina State University

Box 8206

Raleigh, NC 27695

(NASA-CR-185927) EXPERIMENTS IN FAULT
TOLERANT SOFTWARE RELIABILITY Annual Report,

1 Apr. 1988 - 31 Mar. 1989 (North Carolina

State Univ.) 69 p CSCL 098
G3161

Nq0-11460

Annual Technica! Report Submitted to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Langley Research Center, Hampton, Va.

for research entitled

EXPERIMENTS IN FAULT TOLERANT SOFTWARE
RELIABILITY

(NAG-I-667)

from

David F. McAIlister, Co-Principal Investigator, Professor

Mladen A, Vouk, Co-Principal Investigator, Assistant Professor

Department of Computer Science
North Carolina State University

Raleigh, N.C. 27695-8206
(919) 737-2858

RePort Period

Beginning Date: April 1, 1988.

Ending Date: March 31, 1989.

v

Raleigh, April 1, 1989

NASA/NAG- 1-667/Annual Repor t/5.2/NCS U.CS C. (DFM,MAV,AMP,S RV)/April-89 2

ANALYSIS OF FAULTS DETECTED IN
A LARGE-SCALE

MULTI-VERSION SOFTWARE EXPERIMENT*

Mladen A. Vouk, David F. McAllister
Amit M. Paradkar, Satyanarayana R. Vemulakonda

North Carolina State University,
Department of Computer Science, Box 8206

Raleigh, NC 27695-8206

Key Words: correlated faults, similar errors, software testing, multiversion testing, back-to-back
testing, software fault-tolerance, software reliability

Abstract

Twenty functionally equivalent programs were were built and tested in a multiversion software

experiment. Following unit testing, all programs were subjected to an extensive system test. In the
process sixty-one distinct faults were identified among the versions. Less than 12% of the faults

exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as
many as 14 components. However, majority of these faults were trivial, and easily detected by
proper unit and/or system testing. Only two, of the seven similar faults, were "difficult" faults, and
both were caused by specification ambiguities. One of these faults exhibited variable identical-and-

wrong response span, i.e. response span which varied with the testing conditions and input data.
Techniques that could have been used to avoid the faults are discussed. For example, it was
determined that back-to-back testing of 2-tuples could have been used to eliminate about 90% of the

faults. In addition, four of the seven similar faults could have been detected by using back-to-back
e_sn_-of 5-tuples. We believe that most, if not all, similar faults could have been avoided had the

specifications been written using more formal notation, the unit testing phase was subject to more
stringent standards and controls, and better tools for measuring the quality and adequacy of the test
data (e.g. coverage) were used.

*This research was supported in part by NASA grants NAG-I-667.

NAS AINAG- 1-667/Ann ual Repor t/5.2/NC SU.C SC.(DFM,MAV,AMP,SRV)/April-89 3

1. Introduction

The most common fault-tolerant software mechanisms are based on redundancy. They include N-

version programming [Avi77, Avi84], recovery-block [Ran75], and some hybrid techniques [e.g.

Sco87]. For acceptable results all of these techniques require the component failures to be mutually

independent, or at least that the positive inter-component failure c_orrelation is low [Eck85]. Some

earlier experiments [Sco84, Vou85, Bis86,88, Kni86, Tso87, Avi88, Ke188, ShL88] have shown

that failure dependence among functionally equivalent software components may not be negligible in

the context of the current software development and testing techniques. This lead some authors to

question the practical validity of the redundancy based fault-tolerance approaches [Kni86, ShL88].

In the period 1985-87 NASA LaRC funded a four-university 1 experiment to develop and validate

functionally equivalent software versions. The goal of the experiment was to produce a set of

software versions which could be used to study different aspects of multiversion software

development and usage. In this paper we examine the character of the faults found in the twenty

functionally equivalent versions generated during the experiment. The aim is to provide more

information on which design and testing strategies might have been most suitable for avoiding these

faults in the f'mal product.

In the following section we describe the experiment in which the software components were

produced. In section 3 we describe the profile of the detected faults, and we discuss the question of

what could have been done to avoid these faults. The summary is in given in section 4. In this report

we use the terms 'component' and 'version' as synonyms for the term 'functionally equivalent

program, or code'.

2. Experiment

The programmers worked in two-person teams formed by random selection. All programmers

worked from the same specification document written in English prose [CRA85]. A formal

specification language was not used. The programming teams were responsible for the software

design, the implementation and the unit testing phases of the life-cycle. The experimenters provided a

Iparticipating universities: North Carolina State University (NCSU), University of Illinois Urbana Champagne
(UIUC), University of California Los Angeles (UCLA), University of Virginia (UVA). Participants from industry
were: Research Triangle Institute (RTI), Charles River Analytics (CRA). The 1985 phase of the experiment was
coordinated by RTI with assistance from CRA. The 1987 phase of the experiment was coordinated by CRA.

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.('DFM,MAV,AMP,SRV)/April-89 4

requirementspecificationdocumentandacceptance(systems)testingof theproduct.Theprograms
solvedaproblemin inertial navigation.Therequirementwasto interpretandanalyzepartof sensor

signals(accelerometersonly) receivedfrom aredundantstrappeddown inertial measurementunit

(RSDIMU). It wasalsorequiredthat thecodebewritten in Pascal,anddevelopedandtestedin a
UNIX environment on VAX hardware.The problem specification was new, written for the

experiment,and was not debugged via a "pilot" version of the code, or prototyping, prior to the

production of the redundant versions. The initial (very limited) acceptance testing included two

critical variable arrays, one 3 and the other 8 elements long, using 50 random test cases. The

tolerance for comparison of floating point numbers was much larger than the accuracy of the input

data. Functional and structural test coverage was low. We shall call this acceptance testing 'phase I

acceptance testing'. Software development and testing was done on VAX 11/750 and 780 hardware

running UNIX 4.2 BSD. The estimated reliability of the components based on this (very limited)

acceptance testing was about 0.94 (see Appendix I for the estimation process). Additional

information about the experiment can be found in [Ke186, Tso87, Ke188].

The phase II acceptance testing of the produced programs took place in the summer 1987. We shall

call this phase 'certification' phase. The aim of this testing phase was not to evaluate any particular

testing methodology, but to discover, and correct, any faults that may have been left in the versions

after completion of the phase I testing so that we could study the nature of these faults. The base

specification document [UCSB/CRA87] included the changes and additions to the specifications

established in clarifications and ammendments sent to RSDIMU programmers during the phas I

testing. The programs were assigned (see Appendix II) among twenty certification programmers

located at NCSU, UCSB 1 and UVA. Each version was repeatedly tested against the "gold" code

answers. The "gold" code, the testing harness, and the acceptance test data set were produced at

NCSU and distributed to all sites. Whenever any differences were discovered, with respect to the

golden answer, the programmers were requested to investigate the problem and correct the cause.

They were given 20 consecutive difference at a time. Regression testing with the full acceptance test

set was applied to all re-submitted software. Careful records were kept of any changes in the code,

and the programmers were asked to submit a software change and correction report detailing the

fault description, its symptoms and the changes. Intermediate code versions for seven NCSU

programs (iterations) were also retained for further analysis.

In this phase we used tolerances compatible with the accuracy of the input data. All 11 output

variables (59 individual values) were checked for each input. A difference was signaled whenever

1University of California Santa Barbara

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 5

any one of these values differed from the corresponding golden value. The results were obtained

using a tolerance of 0.000244 relative (for 12 bits of input data accuracy) for real numbers larger than

0.1 in magnitude, and 0.0000244 absolute otherwise (requirements specification assumed that the

cockpit display size was five digits), and 0 for integers. The test data sets consisted of 801 extremal

and special value (ESV) and 400 random test cases which provided as complete functional and linear-

block coverage as we believed was feasible under input variable value ranges dictated by the

requirements specifications. The testing harness and the test data are described in Appendix HI.

Functional coverage was determined by comparison of the ESV cases and specifications, while

cumulative execution coverage of the code and procedures was determined through execution tracing

and post processing of the code and trace files. Unexecuted code was inspected and the reasons for

its non-execution were determined after the certification phase ended. In several instances we found

code portions dealing with functions not required by the specified problem (and therefore not tested

for by ESV acceptance cases).

Table 2.1 Program characteristics 1.

Actual Program Total Code Percent Exec. Linear Xqt Percent
Name (loc) (loc) comments code blocks (msee) Change

ncsua P1 4165 3514 55.0 2052
ncsub P2 1809 1312 25.5 1132
ncsuc P3 4177 3376 47.6 3390
ncsud P4 1828 1570 39.5 1310
ncsue P5 2394 2218 39.7 1689
uclaa P6 2100 i781 37.3 1317
uclab P7 1833 1635 25.9 1492
uclac P8 1924 1563 35.7 1336
uclad P9 2525 2208 47.6 1481
uclae P10 1704 1351 33.9 1170
uiuca PI 1 4886 4209 85.4 3884
uiucb P12 2159 1558 46.9 1221
uiucc P13 1974 1609 55.3 1024
uiucd P14 2746 2389 51.3 1712
uiuce P15 2139 1787 31.2 1456
uvaa P 16 3208 2634 21.8 2379
uvab PI7 3198 2237 49.8 2141
uvac P18 3034 2723 27.4 2!80
uvad P19 1837 1525 12.8 1389
uvae P20 2686 2295 18.2 2317

513 496 +1.06
315 880 +0.11
544 701 +3.45
343 582 +7.21
475 828 +3.63
338 718 +7.36
368 5i0 : +K65
378 386 +2.66
432 394 -2.73
288 395 +1.85
263 320 +1.03
260 469 -37.63
261 355 -1.20
313 347 +17.55
351 1283 +4.03
469 4511 +2.82
436 694 +2.69
918 390 +8.66
319 1929 +0.98
501 521 +1.89

1 Data reflects information for the certified versions as received from CRA.

Certification testing detected a number of faults of varying prevalence and seriousness. Some of the

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 6

faults were found to be highly correlated. One fault was detected in the testing harness and one fault

was found (both by UCSB programmers) in the "golden" program through code and output

insPections. In both cases the site responsible for the testing harness (NCSU) was notified

immediately, the faults were corrected, and appropriate patches with an additional 5 test cases were

distributed to all certification sites before the certification testing was concluded. These additional test

cases were aimed at exercising the functionality that was missed in the golden code. The rationale for

adding more ESV test cases to the 796 already in the ESV set was that the fault was discovered

the acceptance testing and therefore it should be removed from all versions, including the

golden one, during that process. Unfortunately, examination of the versions received form CRA

revealed that UCSB did implement these corrections, but UVA did not. This has to be taken into

account when the "certified" versions are being analyxes (i.e. they do not have the same "base line").

The certification testing was done on VAX 11/785 hardware running UNIX 4.3BSD, and

MicroVAX II hardware running Ultrix 1.2. The estimated reliability of the components based on

phase II acceptance testing was > 0.992 (see Appendix I).

2.1 Testing

The principal aim of the testing process reported here was to evaluate and classify all the faults that

have been discovered during the certification phase. The results described in this paper are based on

801 special cases (796+5 ESV cases), 400 random cases used during certification testing, and two

additional sets of 1000 random test cases each generated according to two random profiles. One

generation profile, which we call RANDOM-Ib, was uniform over each individual variable including

noise. The other, which we call RANDOM-II, had normally distributed calibration noise,

exponentially distributed number of noisy sensors during calibration, and it was constructed so that

the edge vector test never failed more than one additional sensor, and no sensors were failed on

input. The random data were used to estimate software reliability and fault visibility, and served as a

check on the extremal and special value testing.

The correctness of the answers was adjudicated using a "golden" program. This program has been

very extensively tested and inspected on its own, and we believe that right now no faults remain in

that code. However, as has been the case in all the experiments published so far [e.g. Pan81,

Bis86,88, Avi88, ShL88] we have not proved the "golden" code correct.

The test sets we used here, and during phase II certification effort, were not designed to uncover any

faults that may be associated with a series of time-correlated consecutive calls to the RSDIMU

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 7

algoritms (e.g. errorsdue to slowly accumulatingdeviationsin variables,we have deliberately
intitialized all variableson evry entry to RSDIMU procedure).Furthermore,althoughsomefaults
relatedto numericalinstabilitiesandround-offerrorswereuncoveredin thealgorithmsthetestsets

werenot designed to specifically search for such faults. We belive that we have detected all the faults

that could be detected without using a complex flight simulator, but it is quite possible that some

more subtle faults, including numerical round-off errors, could manifesting near, or below, the

tolerance thresholds we used. In addition, time-correlation and subtle numerical faults may also

appear if explicitly searched for, although for the latter the magnitudes of the differences between the

corret and incorrect values are probably close the tolerances we used.

For each test case we generated a 21x20 response matrix. Each element of this matrix contained a

vector of 59 values describing the relationship between the response of the row version and the

column version. The vector contained one entry for each variable (or its part, if it was a compound

variable) with 0 denoting agreement, and 1 disagreement between the answers. Row zero carried the

responses of the versions to comparisons with the "golden" answers. We then combined the analysis

of the matrices with the inspections of the actual response values, and the inspections of the code.

A brief structural profile of the versions investigated in the present experiment is given in Table 2.1.

The column marked 'Total' gives the total number of lines of code (loc), including comments and

blank lines. The column 'Code' gives Pascal code size excluding comments (obtained using pxp -s).

The 'Percent comments' column indicates the comment level of the code 1. The 'Linear blocks'

column gives the count of linear code blocks as reported by the pxp processor, and the 'Xqt' column

serves to illustrate the diversity of the average execution time per test case among the components.

Note that one of the components is exceedingly inefficient, but since execution time constraints were

not part of the specifications this is not considered an error. The 'Percent Change' column reflects the

difference in the final code size (in number of lines, including comments) with respect to the initial

version (sign indicating either additions or deletions).

Figure 2.1 illustrates the quality of the phase II acceptance test cases. We show the typical linear

block coverage provided by the different components of the data set used. The coverage is expressed

as the percentage of the covered linear blocks, where a linear block is as defined by the UNIX 'pxp'

processor. We plot the linear block coverage (LBC) function

1 It is the ratio of non-empty comment lines (including in-line comments) to the total number of non-empty lines
of code (including comments)

NASA/NAG- 1-667/Annual Repor t/5.2/NC SU.CSC.fDFM,MAV,AMP,SRV)/April-89 8

Number of executed linear-blocks
LBC- x 100.

Total number of linear-blocks

100

A

90

0

_ 70
0

6O

5O

Program P9 (UCLA-D)

Uniform Random

Random-II

Functional (ESV)

= " " ' • ° = i = • • • = • I • • • • |

0 0 101 10 2 10 3

Number of Test Cases

Figure 2.1 Block coverage provided by three "black-box" test data sets.

wlll¢_ We see that the lowest cumuIative coverage was provided by RANDOM IIdata, while the highest

coverage was obtained through functional, or extremal and special value (ESV), test cases designed

on the basis of the requirements specification, and the study of the "golden" code. But even these test

cases do not provide 100% block coverage. There are two reasons:

a) often programmest have supplied code for unsolicited functions, and

b) code on paths infeasible under the given requirements specifications.

The uniform random profile is a pessimistic one, but tends to provide better coverage because the

rarely used functions and code sections have a better chance of being executed. It is interesting to

observe that the ESV data provide better coverage than the random data only after a certain number

have been generated and executed (over about 200 in this case). The implication is that if the

generation of the functional test data is an incomplete, low quality, process (e.g. inexperienced test

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 9

team/programmers), then it it is quite possible that better code coverage may be achieved by

employing uniform random data. Coverage information for all twenty versions is tabulated in

Appendix IV.

The fault detection efficiency of the test data we have used is illustrated in Table 2.2. The table shows

the number of faults detected by each type of data (ESV and random) during the certification testing.

We see that neither ESV nor random data provided perfect detection on their own. They both missed

the same number of dissimilar faults. Howevert ESV cases we used detected all similar faults, while

random data detected only 5 out of the 7 similar faults. Additional information on the faults can be

found in Appendix V, while more information on the fault detection properties of the employed test

cases in Appendix VI.

Table 2.2 The number of faults detected by ESV-I and random test data used during phase II

certification testing. The ESV-I set contains 796 cases. The random data were composed of 100
cases generated using RANDOM-Ia profile, 100 using RANDOM-Ib profile, and 200 eases
generated using RANDOM-II profile (see Appendix II for details).

Fault Type
Test Set Dissimilar Similar Total

Random+ESV-I 54 7 61
Random 48 2 50
ESV 48 7 55

Random but not ESV 6 0 6
ESV but not Random 6 5 11

From Table 2.2 we see that random data, if genrated with some care, can be almost as good as

special valute test cases in detecting faults. Unfortunately, the efficiency of the random test case

can vary. Table A6.1 shows the irder of detection of faults for the ESV-I set. Table A6.2 shows

the order of detection of faults for 500 RANDOM-Ib test cases. Table A6.3 summarizes the fault

detection propertise of the ESV-I set and the 500 case _0M-Ib set. We immediately see that

these random cases, on the average, detected only about half of the faults detected by the ESV data.

Furthermore from Table A6.2 we see that the fault detection effectiveness of one random data set

appers to saturate very quickly. Our experience with the random testing of RSDIMU code is that

the sensitivity of the random test cases to errors is low. Unless partitioning is employed (it might

be better to use ESV data in that case) detection capabilitiy of the random test cases for distinct

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 10

errors saturates extremely quickly. After 2 to 10 random test cases the same errors are usually

detected over and over again (if not removed). Once past 100 random test cases the detection of

new, different, errors becomes an almost negligible event. This can be changed if we change the

random sampling profile is changed and tuned to the character of the already detected faults, or

partitions not previously covered are sampled.

It would apppear that a similar effect was observed in the recent experiment reported by [ShL88]

where incomplete random back-to-back testing detected about 50% of the faults, while low quality

functional testing detected the other half of the faults.

3. Faults

v

The faults discovered in the investigated code were divided into three classes: specification faults (S),

implementation faults (F) and modification faults (M):

* Specification faults are those that can be directly traced to addition of new functions (and

therefore lack of these functions in the developed code), and those that can be traced to

ambiguities in the original requirements specification document (that resulted in multiple

interpretation of parts of the document) and led to changes in the requirements specification

document for the purpose of clarifying these ambiguities.

* Implementation faults are non-specification faults that were in the code submitted after the phase

I acceptance testing (summer 85), and the faults that were inadvertently introduced by the

certification programmers during certification testing (summer 87) as part of the code changes

needed to satisfy addition of new functions to the requirements specification document.

Implementation faults do not include mistakes made during the correction of specification

ambiguity faults.

* Modification faults are those introduced by certification programmers as part of the attempts to

correct specification ambiguity faults, implementation faults, and already committed

modification faults. Some of the common-cause faults were cross-listed because of their origin

and nature. Information on the modification faults is currently available only for the seven

programs certified at NCSU.

Table 3.1 lists the prevalence of the faults by their (development) phase of origin. The faults that are

cross-listed appear only in the first category into which they fit from the left of the table (e.g. $3/F2

fault of Table 3.2 is counted only in the specification column). The 'Iterations' column indicates the

V

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.0DFM,MAV,AMP,SRV)/April-89 11

number of correction cycles certification programmers went through before the final, certified,

version of the code was produced. Each iteration cycle ended with a new version of the code. The

information for the last two columns of the table was not available for the thirteen programs not

certified at NCSU. A total of 3 distinct specification ambiguity related faults, and 58 distinct

implementation faults were detected in the twenty investigated programs. In addition, 8 modification

faults were detected in the seven programs certified at NCSU. A change in the specification

requirements regarding a call to a voter function (not an integral part of the inertial navigation

problem) required changes in all 20 versions at the beginning of the certification phase. For

completeness this change ($4) is in Table 3.1 but is not considered a true fault. Rounded to the

nearest integer, the average number of specification faults per program is 3, while the average

number of implementation faults per program is 5. In the seven programs for which the information

on modification faults was available we find an average of 1 modification fault per program. At the

NCSU site the correction of the faults required about 9 iterations on the average.

Table 3.1 Classification of faults detected in the programs ($4 is not counted).

Actual Program Specification Implementation Modification Iterations

ncsua P 1 2 2
ncsub P2 3 3
ncsuc P3 3 5 1 8
ncsud P4 3 8 3 12
ncsue P5 3 5 1 5
uclaa P6 2 3
uclab P7 0 4
uclac P8 1 6
uclad P9 2 8 1 10

uclae P10 2 2
uiuca P 11 0 4

uiucb P12 >11 >41 " "
uiucc P 13 2 7 0 10
uiucd P14 2 4 - -
uiuce P 15 2 4 - -
uvaa P16 1 5 1 10
uvab P 17 2 4 - -
uvac P18 2 5 2 7
uvad P 19 1 5 - -
uvae P20 1 4 - -

w

1 There were four major overhauls of the P12 code because the original was very defective
(note the 'Percent Change" column in Table 2.1). In the process, at least four implementation
faults have been removed.

The faults of particular interest in this study are those that can result in failures that result in an

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 12

identical-and-wrong (lAW) response from two or more of the components. These faults are often

called similar, or common-cause, faults. Similar faults appear in several versions, affect the same

functions and problem variables, similar parts of the code, and may cause the versions to fail with

either an IAW response, or with different responses. On the other hand, dissimilar faults are unique

to the program where they occur, and most often they manifest as response different from that given

by any other version (for further discussion of similar faults see, for example, [Avi84], [Bis86,88],

[Kel88]). All dissimilar faults were either implementation of modification faults. However, all

specification faults, and only very few of the implementation faults, were of the similar kind. A

description of the similar faults is given in Table 3.2. A summary of all faults by programs, and a

description of the dissimilar faults is given in Appenix V. The distribution of similar faults across the

components is given in Table 3.3. Also given is their span for IAW answer failures, and an estimate

of the excitation probability of these failures.

Table 3.2 Similar faults.

Fault code Fault description

S1

$2

$3/F2

F1

F4

F13/M9

F14

Misalignment correction problem (specification misinterpretation/ambiguity)

LINOFFSET and other values not computed for failed sensor on input

(specification ambiguity)

Not counting all three edge failures before declaring system or sensor failure
(specification ambiguity problem, sensitivity fault in the implementation).

Display round off error.

Division by zero on all failed input sensors (fatal run-time failure in all cases).

Votelinout procedure call placement fault (implementation fault precipitated by $4)

Input from sensor not masked to 12 bits (modulo 4096 missing).

$4

M5

missing Votelinout voter call (specification change/addition)

Wrong computation of variable SIGMA (threshold for sensor failure comparison)

All three genuine specification faults are ambiguity faults. One of the implementation faults (F2) is so

NAS A/NAG- 1-667/Ann ual Repor tJ5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 13

closely related to a specification ambiguity ($3) that we have cross-referenced it with $3. Four of the

implementation faults (excluding F2) result in IAW failures. One common-cause implementation fault

(F 13) is a direct result of the specification change $4, and since this change was implemented during

program certification (maintenance) it is also cross-listed as modification fault M9. All specification

faults produced correlated failures. All similar implementation faults that we have detected span two

or more versions.
W

Table 3.3 Distribution of common-cause faults.

Fault Component Fault Span IAW span Probability

$1 P2, P3, P4, P5, 7 4 (P2, P3, P4, PIO) <10 -5
P10, P18, P20

$2 P1,P2,P3,P4,P5,P6,P9 14 13-14 (less P9, all 14) <0.02
P10,P13,P14,PI5,P 17,P18,P19

$3/F2 P1, P2, P3, P4, P5, P6,P8, 14 2-10 (See Table 3.4) <_0.24
P9,P12,P13,P14,P15,P16,P17

F1 P2, P3, P4, P7,P8,P9,P10, 12 4 (P2,P9, P13,17) <10 -4
P13,P15,P17,P18,P19.

F4 P3, P4, P5,P7, 7
P13,P15,P20.

7 (Fatal run-time failures) <10 -5

F13/M9 P2, P4, P5, P6,P8 9 4 (P5, P8, PI0, P18) N/A
P9, P10, P14, P18

F14 P1, P2,P3,P5,P8,P9, 10 10 (All fail similarly). N/A
Pll, P16, P17, P19.

W

w

M5 P3, P17 2 2 <0.24

A very interesting fault is the M5 fault. It is the only clearly common-cause modification fault that we

have observed. It results in IAW responses from two of the seven versions in which modification

faults were investigated, It also appears as an implementation fault in program P1 I. Of course,

coincident failures of two or more components due to different faults were observed. However,

accidental IAW's (different faults but identical response for a test case) were not observed. It must be

W

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 14

v

stressed though, that we have been monitoring a considerable number of variables (59) at any one

time, and therefore the effective cardinality of the output space was quite large thus reducing the the

probability of such IAW's [McA87].

As mentioned earlier, the faults which are particularly dangerous are those that produce coincident

failures which result in IAW's whose span is such that the voter is confused or mislead into choosing

an incorrect answer as the correct one. In Table 3.3 N/A in the 'Probability' column means that the

fault was not evaluated in a random setting. From the table we see that for non-specification faults

IAW span does not exceed 10 versions. One of the similar implementation faults (F4) induces fatal

run-time failures in all seven affected components. Such a fault is not difficult to detect if an

appropriate test case is constructed during the testing period because it is self-reporting. However, its

effect is drastic if it is left in the code of even one of the versions. In this case, construction of an

appropriate test case was very easy and natural. Only two other instances of fatal run-time failures

were observed for similar faults (component P13 for $3/F2, and component P3 for F1), although a

number of fatal-run time failures were recorded for dissimilar faults.

More interesting is the fact that four out of the seven (NCSU) certification programmers did not put

the voter routine ($4 change) in the proper place on the first try. This resulted in the F13/M9 fault.

This fault has IAW span of 3, and although this is not critical for the operation of the code in the

absence of staged-voting 1, it reflects on the potential reliability of inter-stage voting. Similarly, a

specification ambiguity fault that is _ important if staged voting is used is $2. Fourteen of the 20

versions had this fault. What is interesting, though, is that its IAW span was observed to vary

between 13 and 14 depending on the execution environment initialization procedure. The cause was

the initialization mode. If all the program variables were initially set to zero (which is often done by

interpreters, and compilers) then fourteen programs exhibited a IAW failure which consisted of

returning the initialization value as the acceleration estimates due to erroneous declaration of the

system failure. However, when specially selected "garbage" values were used to initialize the

variables, only thirteen programs returned this value, while the fourteenth one returned zero because it

overrode system initialization through its own, unrequested, initialization code.

Two important faults clearly stemming from specification ambiguities, and resulting in specification

clarification changes, are S1 and $3/F2. Seven out of twenty components were involved in the case

of S1, and fourteen in the case of $3/F2. The $3/F2 fault could be classified either as an

implementation fault (specifications misunderstood or misinterpreted by programmers, faulty

1Staged voting is an approach where the code of each component is divided up into several stages. After each stage,
voting takes place and the answer that is selected as the correct one is passed on to the next stage of all the
components.

v

w

NAS A/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 15

problem analysis and implementation, or similar), or as a specification ambiguity since a clarification

of the relevant specification text was eventually undertaken. The lAW span of S 1 is four, but that of

$3/F2 is variable. The maximum observed lAW span for $3/F2 is 14 which is also the maximum

lAW span observed for specification faults as a class. However, in practice the failure span of $3/F2

varied between 2 and 10 indicating that the correlation of the failures over the affected components is

not 100% [c.f. Vou88].

Figure 3.1 illustrates the variable behavior of the IAW response span of S3/F2 fault. In the example

we have used 200 uniform random test cases. The variability is caused by different sensitivity of

different versions to the channel noise (sensor failure threshold). In the 200 cases there was not a

single event where all 4-tuples formed from the 20 versions (a total of 4845) failed with a IAW, then

despite the fact that the fault $3/F2 spanned 14 versions, and occasionally could trigger IAW failures

in as many as 10 versions, it could be automatically detected using back-to-back testing with at most

four versions. One version (P4) exhibited extra high failure rate. Besides failing concidentally with

other versions, on 80 occasions the $3/F2 fault triggered an additional single-version failure. All 14

versions never failed on the same test case though, i.e. the maximum failure span was 13. Thus

excluding the 80 P4 failures, there were 18 occurrences of the $3/F2 induced coincident failures in

200 cases.

3.1 Fault Avoidance

The properties of the fault set of special interest are those that can give us information about the

methods that would be effective in avoiding them in the final versions of the code. Of the 61 distinct

faults discovered during the certification testing, only seven were similar faults. Hence, the majority

of faults (54, or 88%) could have been _ detected using back-to-back testing. Back-to-back

testing appears to be a cost-effective approach for fault detection in systems where the fraction of

similar faults is not in excess of about 15 to 20% of the total number of faults [Vou88]. Of course,

back-to-back testing should not be limited to random input data. A certain number of well thought-

out ESV (functional) test cases has to be constructed, in order to provide the basic functional and

structural coverage of the versions. Unfortunately, any deficiency in the construction of these test

cases, or in the application of the testing strategy, can drastically reduce the effectiveness of the

testing. Therefore,it is very important to enforce adequate application of the testing strategy, and the

use of adequate test data. One possible monitoring mechanism are various coverage metrics. It is our

experience that neither full statement (or linear block) coverage, nor full branch coverage, is a

sufficient indicator of the test data set adequacy (although far better than none). More sophisticated

measures, such as advanced data-flow metrics [e.g. Rap85], should be employed. This can be

w

W

U

v

NASA/NAG- 1-667/Annual Repor t/5.2/NC SU.C SC.(DFM,MAV,AMP,SRV)/April-89 16

supplemented with manual, or automatic, verification of the functional coverage provided by the data

(compared to requirements specification).

Table 3.4 Analysis of the failure types resulting from the $3/F2 similar fault over 200 uniform
random cases. Total failure span for this fault is 14.

V

Failure Partial Versions Involved in
Type Frequency Total Span lAW span Partial IAW Failure Comment*

1 7 13 10 6,1, P2, P5, P6, P9, P12,
P14, P15, P16, P17)

2 (P4,P8)
1 P13

2 5 13 8 6,1, P2, P4, p5, P8, P14,
P16, P17)

2 (P3,P12)
2 (P6,P15)
1 P13

3 2 13 8 (P1, P2, P4, P5, P8, P14,
P16, P17)

3 (P3,p12,P15)
1 (P6)
1 P13

4 1 10 5 (P2,P5,P8,P14,P16)
4 6,1, P6, P15,P17)
1 P13

5 1 6 2 6'8, P17),
2 6,10, P14)
1 (P4)

6 1 2 1 (P4)
1 6,10)

FETF

FETF

FETF

FETF

7 80 1 1 (P4)

* FETF - Fatal Execution Time Failure (causes termination of program execution)

The need for formalization of every step of the development process cannot be overstressed. It has

been shown in [Avi88] that the use of formal development techniques can greatly reduce the

NASA/NAG-1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 17

incidence of correlated faults. Several of the similar faults detected in this experiment could have been

avoided if the unit testing had been more formal, and subject to more stringent control, and/or had the

appropriate (and easily derived) test cases been used by individual development teams. For example,

the F14 fault, which spanned 10 versions, could be detected either by a trivial inspection of the code,

or by an equally trivial test case. The problem was that half of the teams simply did not match the

explicitly stated functional requirements with their designs and/or code.

An equally glaring example is provided by the implementation fault F1. The fault affects a non-

critical function _ described in the specification document (rounding of displayed digits, which

is very easy to check for correctness). Unfortunately, the fault manifests only for a special

combination of input parameters which is not simple to generate (reverse program) for the program

as a whole. Hence, despite the fact that the required function was very explicitly stated in the

requirements, the team developing the functional (ESV) test set decided not to "bother" with this test

case, and because the required function was so "simple" and "obvious" a separate test-bed for testing

the display module was not used at f'rrst. Because the development process of the "golden" code was

not formal enough, the fault was not detected prior to its release, instead, it was discovered only after

explicit inspection (code reading) of the "golden" program during the certification process. A set of

five special test cases was then generated explicitly for detection of this fault. The excitation

probability of the fault turned out to be between about 1 in 10,000 to 1 in 500,000 for the random

profiles we have employed for testing, so an equally large number of test cases had to be run and

examined (automatically, of course) to find the special cases. Testing of the rest of the versions then

showed that a similarly embarrassing, and disastrous, train of reasoning must have been followed by

12 other teams. Again, because a formal mechanism for checking on the functional completeness of

the code, and the test sets, was not used the fault "slipped" through. A partly saving grace is the fact

that althoughFI4 spans 12 versions, its IAW span is only 4, so back-to-back testing of any 5-tuple

would have detected it if an appropriate test case had been generated.

The third example that strongly points to the need for very formalized development and testing at the

unit level is the implementation fault F4. In seven programs this fault induced fatal execution-time

failures. It is the result of an attempt to divide by zero in the case when all sensors are assumed to

have failed on input. A straightforward, textbook, example of an extremal test case, yet seven teams

did not think of checking their code for proper functioning under these circumstances. All teams were

asked to submit formal development documents, including a formal test plan and a test log.

However, because the experimenters did not have a formal (and possibly automated) way of

matching the test cases developed by the teams with the requirements, as well as enforcing full

branch and functional coverage at the unit testing level, the fault was left in the code to be discovered

I

1

I

NAS A/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/Apri1-89 18

in the system testing phase.

V

Two of the correlated faults ($2, F13/M9) were related to the placement and use of function calls that

for inter-stage voting. Because the concept was not clarified in sufficient detail in the initial

specification document, majority of the programming teams misunderstood the need for complete

computation of some of the variable values in the situation where a sensor was failed on input. This

resulted in the $2 fault. Had the internal states been monitored (using the inter-stage voting, or using

a debugger) this omission would have been easy to spot. Alternatively, if the specification had been

written using a formal notation (a simple event table, or a decision table, would have sufficed), this

ambiguity would not have occurred at all. An associated fault is the F13/M9. It is easy to recognize,

either by inspection, or by testing. The fault was introduced into the code as the result of a

modification in the specifications ($4). We believe that its primary cause is rooted in the nature of the

second testing phase (certification, summer 87). At that time the programmers were aware of the

existence of the "golden" code, and of _e fact that their code would be subjected to a more stringent

system test. This may have reduced their individual testing efforts to the correction of the defects

reported by the system test, instead of encouraging individualized (unit level) testing. Furthermore,

addition of the voter routine was the f'trst task these programmers were given, and because all the

programmers were new to the project they were probably insufficiently familiar with the code, and

more prone to making an error.

The remaining two similar faults, S 1 and $3/F2, are more of a problem. Both stem from ambiguities

in the specifications. Both can, of course, be detected if appropriate test cases are designed and the

results analyzed, or if detailed code reading and matching with the requirements is undertaken. And

again, formal specification notation may have helped to reduce, or even, avoid these

misunderstandings. In addition, direct back-to-back testing would have discovered both faults, but at

least a 5-tuple would have to have been used to guarantee detection of both faults by random testing

($2 has IAW span of 4, $3/F2 has variable span between 2 and 10). The question is did these

specification ambiguities (recognized in hindsight) somehow draw attention to themselves in during

the design process, and could that have been used to avoid these faults in the absence of more

sophisticated testing tools and a formal specification language?

4. Summary

We have described an experiment in multiversion testing where (we believe) all faults were identified

and classified according to their origin during the development phases of the versions. In twenty

NASA/NAG-1-6671AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 19

functionallyequivalentsoftwareversionswehavedetectedatotalof 3 specificationrelatedfaultsand

58 implementation faults. Altogether sevenof the 61 faults exhibited potential for producing
correlatedfailures.Similar faultswerefoundto spanasmanyas 14versions,butmostof themwere
trivial andcould havebeeneasilydetectedhadappropriatetestingandverification strategiesbeen

usedduringunit developmentandtesting.Threeof thesimilar faultswere specificationambiguity
faults, while four were implementationfaults. Only two of the similar faults (both specification

faults) were classifiedas "difficult" to detectand evaluate.Two faults (again both specification

related)showedvariableIAW responsespan.

Somefault avoidancestrategiesthatwefoundwould haveeliminatedmost,or evenall, of thefaults

areback-to-backtesting,correlationof theprogrammerquerieswith specifications,moreformalunit

developmentandtesting,andmeasurementof theadequacyandqualityof thesystemtestdata.It was
determinedthatback-to-backtestingof 2-tuplescouldhavebeenusedto eliminateabout90%of the

faults. Fourof the sevensimilar faultscouldhavebeeneliminatedby usingback-to-backtestingof

5-tuples.Therest of the similar faults could havebeenavoidedthroughmore formal designand

testingprocess.In fact,most,(perhapsall) similarfaultswehaveobserved,couldhavebeenavoided
hadthespecificationsbeenwrittenusingmoreformalnotation,theunit testingphasewassubjectto

morestringentstandardsandcontrol, andbettertoolsfor measuringthequality andadequacyof the

testdata(e.g.coverage)wereused.

References

[Avi77]

[Avi84]

[Avi88]

[Bis86]

[Bis88]

[Eck85]

[Ke186]

[Ke188]

A. Avizienis and L. Chen, "On the Implementation of N-version Programming for
Software Fault-Tolerance During Program Execution", Proc. COMPSAC 77, 149-155,
1977.

Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and
Experiments", Computer, Vol. 17, pp. 67-80, 1984.
A. Avizienis, M.R. Lyu, and W. Schutz, "In Search of Effective Diversity: A six-
Language Study of Fault-Tolerant Flight Control Software,", Proc. FTCS 18, pp 15-22,
June 1988.

P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dahl, and J. Lahti, "PODS--A
Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
P.G. Bishop, and F.D. Pullen, "PODS Revisited--A Study of Software Failure
Behaviour", Proc. FTCS 18, pp 2-8, June 1988.
D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-I 1(12), 1511-
1517, 1985.

J.P.J Kelly, A. Avizienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T. Tai, and K.S. Tso,
"Multiversion Software Development," Proc. IFAC Workshop SAFECOMP'86, Sarlat,
France: pp. 43-49, Oct 1986.
J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "A Large Scale
Second Generation Experiment in Multi-Version Software: Description and Early Results",

W

v
NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CS C.(DFM,MAV,AMP,SRV)/April-89 20

V

L_
V

Proc. FTCS 18, pp 9-14, June 1988.
[Kni86] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of

Independence in Multiversion Programming", IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-
109, 1986.

[McA87] D.F. McAllister, C.E. Sun, and M.A. Vouk, "Reliability of Voting in Fault-Tolerant
Software Systems for SmalI Output Spaces", North Carolina State University, Department
of Computer Science, Technical Report, TR-87-16, submitted for publication, 1987.

[Pan81] D.J. Panzl, " A Method for Evaluating Software Development Techniques", The Journal
of Systems Software, Vol. 2, 133-137, 1981.

[Ran75] B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng., Vol.
SE-1,220-232, 1975.

[Rap85] S. Rapps and E.J. Weyuker, "Selecting software test data using data flow information",
IEEE Trans. Soft. Eng., Vol. SE-11,367-375, 1985

[Sco84] R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version Dependence
in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984

[Sco87] R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software Reliability
Modeling", IEEE Trans. Software Eng., Vol SE-13, 582-592, 1987.

[ShL88] T.J. Shimeall and N.G. Leveson, "An Empirical Comparison of Software Fault-Tolerance
and Fault Elimination," 2nd Workshop on Software Testing, Verification and Analysis,

Banff, IEEE Comp. Soc., pp 180-187, July 1988.
[Tso87] K.S. Tso and A. Avizienis, "Community Error Recovery in N-Version Software: A Design

Study with Experimentation", Proc. IEEE 17th Fault-Tolerant Computing Symposium, pp
127-133, 1987.

[Vou85] M.A. Vouk, D.F. McAllister; K.C. Tai, "Identification of correlated failures of fault-
tolerant software systems", in Proc. COMPSAC 85, 437-444, 1985.

[Vou88] Vouk M.A., "On the Cost of Back-to-Back Testing," Proc.6th Annual Pacific Northwest
Software Quality Conference, Lawrence and Craig, Inc., Portland, OR, pp263-282,

September 1988

NAS A/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 21

Appendix I

"Static', Reliability Models

Assuming that inputs are selected independently according to some probability distribution

function, and faults are static (no corrections take place for the duration of the measurement) we
A

can estimate the operational software reliability, R, by Nelsons's model

/k

R-- 1 - nf (AI.1)
n'

^Vat(R) = n nf) (A 1.2)
n

where n is the number of testing runs, and nf is the number of failures in n runs. As testing

progresses more test cases are executed and the system response is verified. With successful

corrections the estimate of the reliability (R) of the system increases. It can be shown [e.g. Dur84,

Ehr85, How87] that if N representative random test cases are executed and no failures axe found,

then an upper bound, Pu, on the failure probability, p = I-R, of the system at _ confidence level is

given by the following expression:

Pu = 1 - (1-_) 1/N. (A1.3)

The number, Nt, of test cases (runs) that have to be executed without a failure to show that p is

below a limit Pu with confidence level of _ is

ln(1-_) (A1.4)
Nt - ln(1-pu)"

A frequent choice for the confidence level is 95% (¢X = 0.95). For small Pu, this gives the

following approximation

W

3 (A1.5)
Nt -_uu"

NAS A/NAG- 1-667/Annual ReporU5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 22

1000000000 T

100000000 _

I0000000 J[

"_ 1000000 1

Required *"_. 10oooo JF
Number of -

Test Cases _ 10000

I000_

1oo
I At 950/0 Confidence Level I _'_IO

I I I I I I I I 1_'0.I"

1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+O0

Failure Probability Bound

Figure A.1. The number of representative random test cases required to assure with 95%
confidence that the true failure probability is less than the bound given on the horizontal axis.

Estimating Static Reliability of RSDIMU Software

The first acceptance testing phase (SUmmer '85) offered 50 random test cases. Assuming that the

cases were representative, then the 95% confidence level lower bound on the reliability of a version

that has successfully passed all those test cases is 0.94, using the "no failure" model above

(equation A 1.3).

V

The second acceptance testing phase (certification testing) included 400 random test cases.

Assuming that the cases were representative, then the 95% confidence level lower bound on the

reliability of a version that has successfully passed all the random test cases is 0.992, using the "no

failure" model above (equation A1.3).

v

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 23

Appendix II

Program Identification and .Allocation
(aDoendix not complete)

From fts Tue Mar 3 14:40:17 1987

Received: by cscfac.ncsu.edu (4.12/4.7)

id AA10253; Tue, 3 Mar 87 14:40:11 est

Date: Tue, 3 Mar 87 14:40:11 est

From: fts (fault-tolerant software)

Posted-Date: Tue, 3 Mar 87 14:40:11 est

Received-Date: Tue, 3 Mar 87 14:40:I1 est

Message-Id: <8703031940.AA10253@cscfac.ncsu.edu>

To: harvard!crasunlsje@ seismo

Subject: ordering of programs
Cc: fts

Status: RO

Tentative ordering of the programs by effort to correct (from NCSU)

N localized, relatively simple and easy corrections

(no or minimal knowledge of the specs needed)

I intermediate level errors, probably localized, intermediate

level knowledge of specs may be required

X extensive, global or difficult corrections. Thorough knowledge

of the specs (expert level) and the program needed

The count in each column gives the number of errors identified for each

program on the basis of comparison and classification analysis of

acceptance

testing output responses.

Actual amount of code that needs correcting, time actually modifying the

code

and the testing visibility of the faults may provide different ordering

if used as ordering basis.

It was assumed that knowledge of the specs and the programs is the most

timeconsuming factor, at least for new programmers, within the first

month of debugging.

9

Ii1

m

g

NASA/NAG-1-667/AnnualRep or t/5.2/NCS U.CSC.(DFM,MAV,AMP,SRV)/April-89 24

11

12

13

14

15

16

17

18

19

20

pgm N I X

1 uce 2 0 0

2 ncc 6 0 0

3 uvc3 10

4 uia 4 1 0

5 ncb 2 0 1

6 uve20 1

7 ucb 3 0 1

8 nca 4 0 1

9 uvb 4 0 1

10 rice 5 0 1

uie 5 0 1

ucd 1 1 1

uib 2 1 1

ncd 3 1 1

uic 3 1 1

uva4 1 1

uid 2 1 1

uvd 3 1 1

uca 3 0 2

ucc 3 0 2

Following is a global description of the errors that we believe are

present in each program. The list is based on inspection of test

responses, and only in very few instances on actual code insepection.

We may have missed a few, and we may have claimed an error where

there isn't one on its own (it may go away if one of the other

fault is cleared). However, in general we believe that the following

can serve for ordering programs by difficulty of debugging by

programmers new to the project.

The above table was derived from the following.

Fault Classification

X - difficult to correct, I - intermediate, N - localized, easy to correct
FRF - fatal runtime failure

NAS A/NAG- 1-667/A nnual Rep or t/5.2/NC SU.CSC.(DFM,MAV,AMP,SRV)/April-89 25

ncsuA9.i

N - missing voter

N - built in g value

N - does not compute linoffset for failed on input (spec. change)

N - display fault (dmode=21)

X - sensitivity problems/differences

ncsuB2.i

N - missing voter
N - does not compute linoffset for failed on input (spec. change)

X - sensitivity problem

ncsuC6.i (FRF)

N - missing voter
N - does not compute linoffset for failed on input (spec. change)

N - calibration failure

N - mod 4096 failure

FRFN - subscript out of range (display)

FRFN - missing label (34)

ncsuD7.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - division by zero (display)

I - display bug

X - sensitivity problem

ncsuE4.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - subscript out of range (display)
N - mod 4096 failure

FRFN - missing label (34)

X - sensitivity problem

uclaA.i (FRF)

N - missing voter
N - does not compute linoffset for failed on input (spec. change)

X - an unknown computational bug, wrong linouts

FRFN - subscript out of range (display)

X - sensitivity problem

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 26

v

uclaB.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - division by zero (display)

X - sensitivity problem

uclaC.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - missing label 45

X - sensitivity problem

X - an unknown computational bug

uclaD.i

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

I - dmode=88 display fault

X - sensitivity problem

uclaE.i

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

uiucAl.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

I - display (dmode31) fault

FRFN - missing label 99

FRFN - missing label 34

uiucB 1.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - label 20 missing

X - potential sensitivity problems

uiucCl.i

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - division by zero (display)

FRFN - label 20 missing

I - potential sensitivity problems

NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 27

uiucDl.i

N - missing voter
N - does not compute linoffset for failed on input (spec. change)

x -sensitivity

I - display problems

uiucEl.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - division by zero

N - calibration fault

N - display fault

X - sensitivity

uvaal .i

N - missing voter
N - does not compute linoffset for failed on input (spec. change)

N - display fault

X - sensitivity problems

I - computational fult

uvabl.i (FRF)

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - label 18 missing

N - display problems

N - mod <4096> problem?

X - sensitivity problems

uvacl .i

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

N - calibration error

I - sensitivity?

ux/adl .i

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

N - computationla (sign) error

I - display

X - sensitivity

uvael.i (FRF)

NAS A/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC. (DFM,MAV,AMP,SRV)/April-89 28

N - missing voter

N - does not compute linoffset for failed on input (spec. change)

FRFN - label 0 missing

X - a basic problem? won't run more than few cases.

programs assigned to NCSU by CRA

ncsuc

ncsud

ncsue

uclad

uiucc

uvaa

uvac

V

v

NASA/NAG- 1-667/Annual Repot t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 29

RSDIMU Fault Tolerant Software Experiment

Status Report May 8-15,87

University of California at Santa Barbara

1. UCSB was assigned the following 6 program versions to certify:

ucla.C difficult

ucla.E easy

uiuc.A easy
uiuc.B difficult

uiuc.D difficult

uva.B easy

They have been categorized as easy or difficult to modify by CRA as noted

above.

2. I have 11 programmers at my disposal. Some of these are trusted to

complete

their assignment, others are not - they were assigned accordingly.

3. Initial Assignments:

ucla.C

ucla.E

t (trusted)

2 * u (untrusted) - this means that 2 programmers were

assigned since I was unsure that either one
would finish.

diuc.A t

uiuc.B t

uiuc.D t

uva.B 2 * u

4. Since I still had 3 programmers left, I made the following additional

assignments:

uva.A u

w

NASA/NAG- 1-667/Annual Repor t/5.2/NCS U.CSC.(DFM,MAV,AMP,SRV)/April-89 30

Appendix III

Documentation for RSDIMU-ATS Testing Environment

V

vt,d

RSDIMU-ATS

Fault-Tolerant Software Experiment
ACCEPTANCE ENVIRONMENT

•3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

This is the basic acceptance environment. Most of the shell scripts and programs have either a help
which describes its activation parameters (invoke the script without any parameters), or internal
documentation. Where needed program source code is provided. Current version of the system is
intended for UNIX csh environment under either 4.2/4.3BSD, or Ultrix 1.1/1.2, running on VAX

hardware.

Comparison of the values computed by programs with those using golden code is done using
relative tolerance. It is possible to switch to absolute tolerances if that is desired. Do not do that for

acceptance testing.

Testing tolerances are set to the following values within fts_accept and can be changed by
modifying statements within fts_accept (see fts_accept help):

DiffBestEst = 0.00024414
DiffLinOut = 0.00024414
DiffOffset = 0.00024414

tolerance_mode = relative

Please do not use different tolerances for your acceptance testing before getting concurrence from
all the other testing sites. Otherwise we shall each end up testing and correcting different things.

There is no tolerance regarding the display values (five digits), but one could allow for a difference
in the last displayed digit. To avoid display related warnings and "failures" of the type: gold
4.9999 vs. computed 5.0000, and to therefore test only the display algorithm, we inject (using
voteestimates) golden values for bestest and other real-valued variables prior to display

computations.

The acceptance harness tests for agreement on eleven output variables (infact 59, if elements of

arrays are counted separately, number of elements is given in parentheses). They are:

LINOFFSET, LINNOISE, LINOUT, LINFAILOUT, SYSSTATUS, BESTEST, CHANEST,
CHANFACE, DISMODE, DISUPPER and DISLOWER.

Critical variables are: (3)BESTEST, (8)LINFAILOUT, {(1)SYSSTATUS }
Non-critical: (1)DISMODE, (3)DISUPPER, (3)DISLOWER, (12)CHANEST,

(4)CHANFACE
Intermediate: {SYSSTATUS }, (8)LINOFFSET, (8)LINNOISE, (8)LINOUT

All variables are checked for each test case.

For more details on the checking of variables and tolerance used see the listings of the fts_harness

files, and the April '86 NCSU Working Notes from the Langley meeting

v

NASA/NAG- 1-667/Ann ual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 31

(NASA.FTS/NCSU/WN/1/Apr-86), and UCLA notes from the same meeting.

To avoid accidental correctness problems output variables are "trashed" before each test case is
run. The trash values injected in the various output variables of rsdimu are as follows •

LINOFFSET
LINOUT

BESTEST.ACCELERATION [1..3]
CHANEST [1..4].ACCELERATION [1..3]
DISMODE

DISUPPER [1..3]
DISLOWER [1..3]

-9999.0
999999.0
9999999.0

9999999.0;
65534
65534
65534

The values for real variables (first four listed above) cannot occur for the current set of input data,
and are highly unlikely otherwise. The display values are supposed to turn on only the G segment
for the least significant digit. Boolean output variables, and user defined are initilized by the
compiler (to zero).

Primary scripts:

fts_certify

fts_accept

fts_correq

- shell script which activates fts_accept with all.dat test data and produces
a correction request report and test cases for the cerification team by
running fts_correq. Certain program naming conventions and running
options are built-in.
- shell script for constructing, compiling and running harness+rsdimu
code.

- correction request generation shell script, generates a report/request
suitable for mailing to the maintenance teams.

Utility scripts and programs:

fls_listdata

fts_prnt
fls_prterr
fts_terl
fislc
fts_uc
fts_nc

- script for listing test cases from the test data files.
- data listing program.
- program produces test cases suitable for use by fts_driver.p code.
- block coverage computation script.
- lower-case filter.

- upper-case filter.
- comment-delimiters lex-based f'flter.

Source code and script parts:

flsio

fls dbxbug
fls_dbxinit
fts_harness.declare
fts_harness.rest
fts_msgtext
fts_prnt.p
fts_prterr.p

- sed control code to flag "integer","rear',and rsdimu i/o.
- dbx bug control code.
- dbx initialization code.

- test laarness declarations.
- test harness body.

- correction request message.
- source code for fts_prnt.
- source code for fts_prterr

Documentation and examples:

ReadMe

ReadMe_to_cerfify
- general information about the "accept" directory.
- certification procedure using fts_certify

i

W

V

W '

W i

%J

NASA/NAG- 1-667/Ann ual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 32

ReadMe_accept
example/

newcode/

Data links:

aU.dat /
esv.dat
randNCSU.dat
randCRA.dat

- using fts_accept.
- directory with example outputs from an fts_accept run (ncsuD7.i tested

by executing:
fts_accept ncsuD7.i ncd7 all -c -x > test.ncd7an&

fts_correq ncd7 all > correq.ncd7).
- empty directory for testing results (reminder),

- symbolic link to esv+random acceptance test cases.
- link to extremal and special value (esv) test cases.
- link to independent random test cases (uniform profile).
- link to independent random test cases (shaped profile).

V

V

All .dat files are in ../data.

It is also assumed that the code to be tested is in ../code.

The fts_lc, fts_uc, fts_nc, and initial fts_io filters were written by RTI.

The filter fts_io (integer/real, and i/o) is rather crude. It will miss 'real' at the begining of a line.
It may also cause false warnings regarding use of integer and real types, and of i/o in the rsdimu
code. In those cases hand editing and recompilation of <work_name>.p (rsdimu+harness) files
may be necessary. If editing, search for two question marks ??. If recompiling use:
pc -s -C -g -z options. Re-run fts_accept without the -c option.

Note that -s compiler option yields messages regarding non-standard use of Pascal in the code

(primarily the harness code). These messages should be ignored.

Alternatively, delete the first two lines (real/integer), or third and fourth lines (i/o) of the fts_io
code.

fts_nc filter for comments may cause problems by making nested comments of type {(* comment
*) } transform to { { comment } } which is illegal. This filter can be excluded from the processing

pipe in fts_accept.

V

V

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 33

Fault-Tolerant Software Experiment
PROCEDURE FOR ACCEPTANCE TESTING

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

* For the purpose of conducting the acceptance testing (certification *
* of the 20 programs) it is recommended that you use fts_certify. *
* Unless you intend to use fts_accept directly, rather than through *
* the fts_certify facility, you do not need to read this fiIe. *

It is assumed that the communication between the experimenters and the maintenance personnel
will be via electronic mail. It is further assumed that the experimenter has full access to

maintenance personnel flies, but the reverse is not true. It is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2 environments running on VAX
hardware (else see nonVAX_host/directory).

Ii

The testing begins by placing the code which is to be tested into the code/directory. Enter the
accept/directory and start the initial round of testing by executing the fts accept shell script. It is
recommended that you use the -x option and benefit from the coverage in_rmation thus provided.

For example:
fts_accept ncsuB2.i ncb2 all -c -x > test.ncb2all&

NOTE: YOU CANNOT RUN TWO fts_accept JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (IN BACKGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts_accept FROM EACH OF
THEM WITHOUT INTERFERENCE.

The run should either result in error messages (exit code <= 8) or should complete successfully

(exit code 11). When the background job ends check the test.<name>all file carefully.

* No compiler errors or missing, voter call problems (exit status > 5).
* Fatal execution time errors exit status = 7.
* Differences detected from expected output exit status =8.

II.

If the test run ends with any status but exit(11), i.e. complete success, produce an error correction

request for the maintenance team by running fts_correq script. For example:

fts_correq ncb2 all > correq.ncb2

Make sure that the number of failures you wish to analyse is set to 1. For this see fts_correq code
(run fts_correq without parameters). File errdata.ncb2 will contain input data for failed cases in a
form that is suitable for use by the "fts_driver.p" code in certify/. Check the content of correq.ncb2
and mail it to the maintenance team working on the <name> code (in examples: ncsuB2.i and

higher versions, i.e. <name>=ncb2, or ncb3 etc).

V

NAS A/NAG- 1-667/Annual Repor t/5.2/NC SU.CSC.(DFM,MAV,AMP,SRV)/April-89 34

You may also have situations where you need to send non-standard messages as part of the
correction request. For example, people may send you code and reports with incorrect or
inappropriate version numbers. In situations like that create and insert the message at the begining
of the correq.<name> file, just after the standard initial paragraph.

lII.

Now create a subdirectory that will hold the starting, and all subsequent versions for a particular
program(mming team). For example:

mkdir newcode/ncsuB

make a sub-subdirectory for the current program version:

rnkdir newcode/ncsuB/v2

and move all the fries you want to keep into that sub-sub directory, e.g.

mv *ncb2* newcode/ncsuB/v2

You may wish to use diff and compress processors to reduce stored file sizes.

Unless you are interested in doing further correlation analysis and extracting intensity functions
and experimental MCF profiles (for the purpose of detecting and eliminating inter-version
dependence during the acceptance testing, not assumed a standard procedure in this experiment)
you may not wish to keep trace.<name>all, vect.<name>all and binrep.<name>all files. The
terl.<name>all file contains a compressed overview of the executed code blocks (all begining with
0.---I have not been executed and you should find out why). You will not generate the trace, vect
and terl flies, nor keep binrep if you do not use the -x option. You may also wish to dispense with
<name> and <name>.p files which are the executable harness+rsdimu and source harness+rsdimu
respectively. We would recommend that you save at least the test.<name>all and the
error.<name>all files.

Any communication (questions and answers) received prior to corrected program version are also
saved into the "active" newcode sub-sub directory as "ql", "al", "q2", "a2" etc.

IV.

Upon receiving a message with the location of the latest corrected version, and of the
correction/change report(s), cd to accept/:

Create a new subsubdirectory in the appropriate program subdirectory, e.g. ncsuB3.i
location and change report have just been received mkdir newcode/ncsuB/v3
Save the location/change report message into v<number>, e.g. from inside the mail:

s <#> newcode/ncsuB/v3/correction_report

where <#> is the number of the mail message on your h-list.

* Then (<path> points to maintenance team location the code):

cp <path>/ncsuB3.i newcode/ncsuB/v3/ncsuB3.i
cp <path>/ncsuB3.i ../code/ncsuB3.i

V

NASA/NAG- 1-667/Annual Repor t/5.2/NCS U.CSC. (DFM,MAV,AMP,SRV)/April-89 35

fts_accept ncsuB3.i ncb3 all -c -x > test.ncb3all&

Now repeat the previous steps depending on the results of the test run, i.e. run a fts_correq if
necessary, move results of the run into, for example v3 etc. Use appropriate university name and
version numbers.

Notes:
**

It is expected that the maintenance team makes a single error correction that was requested by the
correq.<name> report and sends back to you a mail message giving the location in their directories
of the new and corrected code version, the new version number and one (or more if several

changes had to be made to correct an error) error correction report(s). Save the received location
message and the correction report into the "active" newcode sub-sub directory as
"correction report", e.g.

newcode/ncsuB/v2/correction_report

You procede then to pick-up the new version of the code and copy it into appropriate newcode sub-
sub file, and ../code file (you may wish to use pointers/links to save space instead). Check that
they send you the code and the report with an appropriate version numbers everytime.

>>

Check the error report they send against the test report you have!I! If there is any indication at all
that the difference may be due to an error in the "golden" code (i.e. supplied expected
answers)freeze all testing and immediately inform ATS distribution site, i.e. NCSU (see
fts86/ReadMe for address, phone etc.)
>>

It is extremely important for the success of the experiment that you keep not only the final,
corrected version of each program, but that each intemediate version submitted for acceptance
testing is saved and tagged with an appropriate version number and information about the
changes/corrections (using the provided change form). It is expected that programmers will correct
one error at a time (and should not be given requests for more than one correction at a time), so
that we can keep track of the influence particular errors had on the overall system failure probability
etc.

The "certify" directory contains code and Fries that would be sent to each maintenance/certification
team. It contains a basic rsdimu driver (to avoid interface problems) and instructions on its use. It
also contains a sample input and output, and an electronic error report file. Whenever a change is
made in the code it is expected that the programmer will record using this report. The new version
of the code and the error and change report copy are both returned to the experimenters.

It is essential that each program be given a version number and associated with it the date of it
creation. Every time a program is corrected its version changes and should be recorded in the
correction report, as comments in the code itself, and should reflect in the file name for the new
code (as kept in the "code" directory, and in the "newcode" directory in accept/).

W

W

w

NASA/NAG- 1-667/Ann ual Repor t/5.2/NCS U.CSC.(DFM,MAV,AMP,SRV)/April-89

Fault-Tolerant Software Experiment
PROCEDURE FOR CERTIFICATION TESTING

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05- Ma r-87

36

v

_v

It is assumed that the communication between the experimenters and the maintenance personnel
will be via electronic mail. It is further assumed that the experimenter has full access to
maintenance personnel files, but the reverse is not true. It is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2 environments running on VAX
hardware (else see nonVAX_host/directory).

I*

The testing begins by placing the code which is to be tested into the code/directory. Enter the
accept/directory and start the initial round of testing by executing the fts certify shell script. For
example:

fts certify ncsuD7.i ncd7
or

fts..certify ncsuD7.i ncd7 > certify.ncd7&

The latter form should be used if you wish to run in the background.

NOTE: YOU CANNOT RUN TWO fts__certify JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (EVEN IN BACKGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts...certify FROM EACH OF
THEM WITHOUT INTERFERENCE. ,

fts_certify calls fts_accept with all.dat testset and -c option. Output is automatically routed into file
test.<name>all. This file will then contain information about the acceptance test run, and will be
used as the basis for forming a correction request file correq.<name>.

The run should either result in error messages (exit code <= 8) or should complete successfully
(exit code 11). When the job ends check the test.<name>aU file carefully.

* No compiler errors or missing voter call problems (exit status > 5).
* Fatal execution time errors exit status = 7.

* Differences detected from expected output exit status =8.

lI.

If the test run ends with any status but exit(11), i.e. complete success, an error correction request
will be produced for the maintenance team. The correction request will be in correq.<name>, and
the test cases that caused up to the first 20 failures will be in errdata.<name>.

Check the content of correq.<name> and mail it to the maintenance team working on the <name>
code (in examples: ncsuD7.i and higher versions, i.e. <name>=ncd7, or ncd8 etc).

Mail or copy directly into the directory of the maintenace team file errdata.<name>. The format of
the data in this file is suitable for direct use by their "driver" program, so that they can do their own
testing.

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 37

Your systemmay haveabyte limit onmail messagesthatcanbepassedthroughit (e.g. 100,000
bytes).In that caseyou mayfind that yourcorrectmnreportmay be too large,andmay become
truncatedby thee-mail system.It is saferto sendonly shortmessagesandto transfer long files
directly into certification team'sdirectory using cp, e.g. 20 failures in ncsuD7.i generatea
correq.ncd7requestfile of about4000linesof code(about170,000bytes)

You may also have situationswhereyou needto sendnon-standardmessagesaspart of the
correction request. For example, people may send you code and reports with incorrect or
inappropriateversionnumbers.In situationslike thatcreateandinsertthemessageat thebegining
of thecorreq.<name>f'de,just afterthestandardinitial paragraph.

III.

The following proceduredescribesprogramanddataversionmanagementwithout RCSor SCCS.
You shouldreadit regardlessof themanagementprocedureyouwill usesothat you candecide
whatto save/store.

Createa subdirectory that will hold the starting,and all subsequentversionsfor a particular
program(mmingteam).For example:

mkdir newcode/ncsuD

makeasub-subdirectoryfor thecurrentprogramversion:

mkdir newcode/ncsuD/v7

andmoveall thefilesyouwantto keepinto thatsub-subdirectory,e.g.

mv *ncd7*newcode/ncsuD/v7

Unlessyou are interestedin doing correlation analysisand extracting,intensity,functions and
experimentalMCF profiles(for thepurposeof detectingandeliminatingrater-versiondependence
during theacceptancetesting,not assumeda standardprocedurein thisexperiment)youmaynot
wishto keeptrace.<name>all,vect.<name>allandbinrep.<name>allfiles. Theterl.<name>allfile
containsa compressedoverviewof theexecutedcodeblocks(all beginingwith 0.---I havenot
beenexecutedandyoushouldfind out why). You will notgeneratethetrace,vect andterl files,
nor keepbinrepif youdonot usethe-x option.Whenusingfts_certify this is default in or der to
reduceprogramtestingtimeandsvestorage.

You may also wish to dispensewith <name> and <name>.pfiles which are the executable
harness+rsdimuandsourceharness+rsdimurespectively.We would recommendthatyou saveat
leastthetest.<name>allandtheerror.<name>allfiles.

To savespaceyoucansaveonly thedifferencein thecodebetweenthe startingversionandthe
new version (e.g. ncsuD7.iand ncsuD8.i,or ncsuD7.iandncsuD9.i). For that purposeusethe
diff processor(readDIFF(1) manual).

You canfurtherreducestoragespaceby "compressing"all thesavedfiles usingcompress,or any
othercodecompressionprocessoravailableonyourmachine.

v

NAS A/NAG- 1-667/Annual Repor t/5.2/NC SI_I.CSC.(DFM,MAV,AMP,SRV)/April-89 38

LV

Whatever the scheme, make sure that you can rebuild the starting files and versions.

Any communication (questions and answers) received prior to corrected program version are also
saved into the "active" newcode sub-sub directory as "ql", "al", "q2", "a2" etc.

IV.

Upon receiving a message with the location of the latest corrected version, and of the
correction/change report(s), cd to accept/:

Create a new subsubdirectory in the appropriate program subdirectory, e.g. ncsuD8.i
location and change report have just been received

mkdir newcode/ncsuD/v8

* Save the location/change report message into v<number>, e.g from inside the mail:

s <#> newcode/ncsuD/v8/correction_report

where <#> is the number of the mail message on your h-list.

* Then (<path> points to maintenance team location the code):

cp <path>/ncsuD8.i newcode/ncsuD/v8/ncsuD8.i
cp <path>/ncsuD8.i ../code/ncsuD8.i

alternative for latter (saves space):

cd ../code

In-s ../accept/newcode/ncsuD/v8/ncsuD8.i ncsuD8.i

fls_cerfify ncsuD8.i ncd8 > certify.ncd8&

Now repeat the previous steps depending on the results of the test run. Use appropriate university
name and version numbers.

It is expected that the maintenance team makes a error corrections for up to the f_rst 20 reported
failures that were requested by the correq.<name>. Certification (maintenance) team is supposed to
mail back a message giving the location in their directories of the new and corrected code version,
the new version number and one (or more if several changes had to be made) error correction

report(s). You may if you wish use hardcopy correction reports, but there is a danger that the
reports may evenuatly get separated from the code and corrections to which they refer.
Furthermore if kept in electronic form it may be easier to analyse them.

Save the received location message and the correction report(s) into the "active" newcode sub-sub

directory as "correction_report", e.g.

newcode/ncsuD/v8/correction_report

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 39

You procede then to pick-up the new version of the code and copy it into appropriate newcode sub-
sub file, and ../code file (you may wish to use pointers/links to save space instead). Check that
teams send you the code and the report with an appropriate version numbers everytime.

>>

Check the error report tems send against the test report you have!!! If there is any indication at all
that the difference may be due to an error in the "golden" code (i.e. supplied expected answers)
freeze all testing and immediately inform ATS distribution site, i.e. NCSU (see fts87/ReadMe for
address, phone etc.)
>>

It is extremely important for the success of the experiment that you keep not only the final,
corrected version of each program, but that each intemediate version submitted for acceptance
testing is saved and tagged with an appropriate version number and information about the
changes/corrections (using the provided change form).

The "certify" directory contains code and files that would be sent to each maintenance/certification
team. It contains a basic rsdimu driver (to avoid interface problems) and instructions on its use. It
also contains a sample input and output, and an electronic error report file. Whenever a change is
made in the code it is expected that the programmer will record it using this report. The new
version of the code and the error and change report copy(ies) are returned to the experimenters.

It is essential that each program be given a version number and associated with it the date of its
creation. Every time a program is corrected its version changes and should be recorded in the
correction report, as comments in the code itself, and should reflect in the file name for the new
code (as kept in the "code" directory, and in the "newcode" directory in accept/).

I

i

I

W

v

NASA/NAG- 1-667/Annual Repor t/5.2/NC SU.CS C.(DFM,MAV,AMP,SRV)/April-89 40

RSDIMU-ATS

Fault-Tolerant Software Experiment
Instructions for Certification Teams

3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/12-May-87

v

V

v

Welcome to the FTS certification project. This is a NASA sponsored experiment in Fault-Tolerant
Software. Your part will be to find and correct any bugs in the software, under controlled
conditions. The software means one of the twenty programs that were produced during the first

phase of this experiment.

You should be in possession of the following documentation (if you are not please see your
experiment supervisor).

RSDIMU specification (version 3.2/10-Feb-87)
RSDIMU specification (version 2.1/19-Sep-85)

You should also have a directory called "certify" sent to you by the FTS experimenters. In this

directory you have the code for the driver, instructions for its use, and some test data. All file that
are part of this testing package begin with 'fts_' and should not be modifed by you except under
special circumstances, and after consultation with your experiment supervisor. You can of course
copy them and then modify them at will. This is not advised.

You will be receiving messages about needed corrections via e-mail. You should read them, correct
the program to the best of your abilities, and test it. The data on which the program failed will
either be attached to the message or will be sent to you separately. You can then use this data to

test your code.

The message with correction requests is expected to be of the form

correq.<name>

where <name> is the code for the program you are correcting (university code followed by the

team code and program version number). The data for the cases you failed (suitable for use with
your system are expected to in a file of the form

errdata.<name>all

Once you are satisfied that you have found the fault that is causing the error(s) you were requested
to correct, you should fill out (make a copy) the error_report and send it to your supervisor's e-
mail address. Your site may also require you to fill in and submit a hard copy of the report. In the
same message you should also tell us what is the current version of your program and in which file
one can find it (we shall need copies of your corrected programs so do not change them once you
have sent a message that one is ready for pick-up).

The program which you have just finished correcting must be in a file called <unam>XX.vYY,
where <unam> is the agreed upon abbreviation for the university at which the code was originally
produced (e.g. ncsu, ucla, uiuc, uva), XX stands for the letter and number associated with your
program code, and YY is the current version of your code (you begin by incrementing the number
in XX by one). For example C6, i.e. ncsuC6.v07 means that you have updated ncsuC6 to version
7). You should also learn to update the version number in the program header in the style in which
it is already there. If it is not part of the code you should add a comment header with the version
number and date (e.g. ncsuC6.v07/15-Jul-86). A sample header is shown in fts_driver.p code.
If in doubt please ask about details.

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 41

Pleasebearin mind that theoriginal specificationshavebeenchangedandthat the latestversion
(theone you have)may requireyou not only to correctexisting code,but also to addto it (for
examplemissingcallstovoterroutines).

File ReadMe_datacontainsadescriptionof thetestcasesthatarebeingusedto testyour code. You
should use this list in conjunction with the correq.<name> report to locate and identify errors.

Please read the documentation you have received for the experiment. Note that you should keep all
communications concerning the program you have been given between yourself and the
experimenter, and should communicate through electronic mail

Please feel free to ask e-mail questions about any part of this experiment.

Note the following rules and guidelines:

°

2.

.

.

6.

Do not change protections on any work-related files.
Communications are restricted during this experiment as follows. You may not discuss any
aspects of your work in this job with other programmers. Any work-related communication
between you and the Professor is to be conducted via UNIX mail. We require this so in the
event of an error or ambiguity in the specifications, or some other significant event, all
students may be sent a copy of the mailed question and its answer. 3. Every day you
work you must log onto your UNIX account. In this way you will receive in a timely
manner all mail concerning answers to questions, any updates in the specifications etc.
You should also fill in a time-sheet once a day.
Your Professor will read the UNIX mail once early in the morning and again in the late
evening (Monday through Friday). All questions should be directed to him/her.
It is your responsibility to read about UNIX tools you are not familiar or comfortable with.
Once a week, on Friday, you should submit a weekly progress report, describing the work
you did during the week (number and type of errors you have corrected, any problems you
have encountered running the driver harness, hardware problems, the total time you have
spent working on the project during the week, whether reading or using the computer, if
reading you should specify what and which part of the specs or which error prompted you
to that action, etc.). Report is to be submitted via e-mail.

Good luck

W

W

V _

V

NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 42

RSDIMU-ATS

Fault-Tolerant Software Experiment
DATA

3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar'87

V

v

All the testcases in this release of the system comply with the specification version 3.2/10-Feb-87.
A test case entry consists of an input record, and an output record. The latter contains what is
believed to be the correct answer to the input record according to the 3.2 specs, and as

generated/given by gold3v2.i.

Your code will be tested with a set of extremal and special value (ESV) test cases (796 of them)

followed by 400 random test cases.

The ESV test cases are based on an initial random case which was then modified step by step to

check a particular function and/or option. In the following overview of the ESV
data only the principal features of the data sub-classes are given, along, with the
principal variables that were changed at any one time. Changes are gwen with
respect to a base test case (usually #1).

1 A general random test case, DMODE=0 (RTI, foofl.dat), votecontrol=0. Checks
that all the voters are off.

2-7. Test cases checking voter placement. Voters in the fts_harness are activated via
VOTECONTROL one at the time. VOTECONTROL activation order 1, 3, 2, 4, 8
16. Votecontrol and their activation results are detailed below:

1 : Sets the Linnoise values of first 4 sensors to true.
3 : Sets Linoffset value of first sensor to 0.0
2 : Sets linout value of first sensor to BADDAT;
4 : Sets SYSSTATUS to false.
8 : sets the estimate values of acceleration values to large values of 99999.0

16 : Sets garbage values in display output values.

General test case, (base 1) DMODE = 88.

9-19

20-27

28-52.

53-85.

base = case #1, systematic changes in DMODE testing for principal display modes
(0,21-24,31-33,1,2,99). Check for various display modes which do valid displays,
and the boundary display modes.

Check for mod 4096 (al! chans), base = #1, offraw:selected values are increased
with 4096 or 8192 to check if only lower order bits are being used.

base = #1, changes in DMODE and LINFAILIN, checking for different "blank"
displays, specific failure display formats, and failures of one sensor (28-37), whole
faces (two sensors, 38-43), and various combinations of four failing sensors (44-
52), with one instance of eight failed sensors (50). The sensors are failed on input,

to check for I display.

base = #1, random activation of different display modes continues (to ultimately test
all values 0-99 by the end of the ESV set). Noise on calibration (OFFRAW) in

steps of+/- 6, +/-12, +/- 18 and +/- 24.
Case 57 test has LINSTD=8, DMODE=I and noise on calibration channel 1 of +/-

24 (8x3=24). Also checked are the display failure formats for LINNOISE values,
and the correct use of variable LINSTD, and correct computation of calibration

NASA/NAG-1-667/AnnualReport/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 43

noise levels. 6 and 24 were chosenbecausethesewere the boundarycasesfor
noisinessfor thelinstd valueschosen.

87-110 changesin LINSTD (9, 2,1 with +/- 24 on i/p channels)to checkcorrect useof
LINSTD variableandsensitivityof thecalibrationprocedure.

86;111-149 changesin RAWLIN, DMODE, LINFAILIN, variouscombinationsof failures on
input, noise and edgevector failures, base = #1. Values in RAWLIN are so changed
as to reflect an assured failure in edgevector test, so that there are no ambiguities
left. The values of DMODE are again chosen to test the display failure format. The
failures are combined with failures on input, to see if the edgevector tests are

properly employed.

150-151 Large changes in misalign [i,6] field, only the sixth axis was chosen for
contamination because according to the latest specifications that is the only angle not

used in the rsdimu procedure. It use significantly changes output values only if its
value is much larger than normal. Changes in the values of other angles will not
provided new information.

152-392 Test cases checking for the minimal sensor noise levels for failure declaration.

Cases 152-365 no prior failures.
Cases 366-392 prior failures on one and two faces. These test cases test the
sensitivity requirements that all three edges fail the edgevector test before a failure is
declared. False alarms are raised when only one or two edges fail. The normal
value for the triplet threshold is 49 counts away from the correct figure for no prior
failures on the rsdimu. The threshold values will change with the number and place

of previous failures.

393-796 CRA proposed test cases with various combinations of sensors failed on input and
up to one additional sensor failed in the edge vector test. 56 test cases with 1 sensor
failed on input. 168 cases with two sensors failed on input. 120 cases with 3
sensors failed on input. 30 cases with 4 sensors failed on input. 8 cases with 7
sensors failed on input, and the rest are other combinations.

Test cases numbers higher than 796 refer to random test cases.

NASA/NAG-1-667/AnnualReport/5.2/NC SU.CS C.(DFM,MAV,AMP,SRV)/April-89 44

Fault-Tolerant Software Experiment
DRIVER FOR THE RSDIMU CERTIFICATION

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

v

**** You do not need to read this if you will be using fts._compile and fts_execute macros. ****

fts driver.p is a Pascal driver program to run your rsdimu procedure.You may make
modifications to suit your tastes, but it is adequate in its present form. To compile it you have to

include your file containing rsdimu procedure in the place provided in the source code. (It has to
have a .i suffix to run successfully). Also you have to make a call to rsdimu procedure at the place

designated.

The compiler command would be:

pc -C -s -o driver fts_driver.p

-s option would circumvent any problems you may encounter due to mixed letter cases and non-
standard i/o handling.

The executable module is created in file "driver", which can be run as a shell command. The driver

expects the testcase input in a format as shown in the file "fts_errdata.sample". The output, after a
successful run of the driver, is in fts_sample.out. Note driver is interactive. If you wish to generate

your own input data you will need to use the "No_output_data" option.

Note that there are several parameters which are special and are not part of the rsdimu

variable/parameter set and are not given in the specs. These variables appear at the beginning of the
fts errdata.sample file. The rsdimu parameters begin with 15.0000 for obase. If you wish to use
thefts driver.p on its own and without golden data then you need to retain only the line before
15.001_3 (votecontrol, case number). Votecontrol serves to control special voter routine actions

(whether a particular voter changes the values of it parameters or not). It is used solely for testing
placement and use of the voter routines. You need to leave it as is for regression testing of your
code after correction. You may experiment with it if you wish to build you own test sets. You do
not have to worry about it in the rsdimu code, the variable is taken care of in the driver code.

The other parameters control the comparisons with golden answer and you do not need to use
them, unless you provide full format of the file (with dummy golden answers for example).

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.fDFM,MAV,AMP,SRV)/April-89 45

RSDIMU-ATS

Fault-Tolerant Software Experiment

Testing RSDIMU code
3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

Using the fts_compile and fls_execute macros is simple. Run them without any parameters to
obtain the description of the paramters you need. The following sample should help.

It is assumed that you have received correq.ncd6 and errdata.ncd6all from your experiment

supervisor.

To compile program ncsuD7 which is (let's assume so) in your certify file, and is the program you

have just corrected run

fts_compile ncsuD7 7 > c.7&

When the run finishes check c.7 for compilation errors etc. If ok proceed (rsdimu.7 will contain
driver+ncsuD7 executable code).

fts_execute 7 errdata.ncd6all ncsuD7 > x.7&

When job finishes check x.7. If there still are differences from the expected outputs go back and
correct your code once more, otherwise submit error_reports and the new code to your supervisor.
Make use of the correq.ncd6 and ReadM'e_data.

W

V

NASA/NAG- 1-667/Ann ual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 46

RSDIMU
RSDIMU-ATS

Fault-Tolerant Software Experiment
DATA FOR THE ACCEPTANCE TESTING
ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)
3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

V

%J

All the testcases in this release of the system comply with the specification version 3.2/10-Feb-87.
A test case entry consists of an input record, and an output record. The latter contains what is
believed to be the correct answer to the input record according to the 3.2 specs, and as

generated/given by gold3v2.i.

The test cases are supplied in Pascal readable files. The format can be found in the fts_prnt.p
source code in accept/. The format in which the test cases are given is suitable for use with the
accept/fts_accept. Use of the system in non-Vax and UNIX-like environments is described in
nonVAX_host directory, data may be re-generated using code suplied in the "generators"
directory. The latter action is should not be undertaken without consultation with the ATS
distribution site (NCSU).

If you wish to print out all, or some, of the test cases use accept/fts_listdata. If you wish to
compare (difference) test cases use fts_diff.

This set of test cases was designed and generated for acceptance testing of the rsdimu code. It
consists of a group of 796 extremal/special value (ESV) test cases and a group of 400 random test
cases. There are four files of data:

all.dat

esv.dat
randNCSU.dat
randCRA.dat

ESV test cases, followed by random test cases (randomNCSU.dat, then
randomCRA.dat).
ESV test cases, only (796).
random test cases, only (uniform sampling, 200).
random test cases, only (shaped sampling, 200).

A successful pass through all the test cases gives an estimated lower limit on the reliability of the
rsdimu code of about 0.992 (valid for the employed sampling prof'fle).

The all.dat set should provide 100% block coverage of the rsdimu code. If this is not the case
(running fts_accept with -x option will give the coverage info), one should very carefully examine
the tested code in places where coverage was not provided. The nature of the rsdirnu problem, and

the specifications, is such that a thorough programmer can provide for situations and functions
which are not explicitly handled in the specifications (e.g. singular matrices, large changes in the
slope constants leading to large raw acceleration values). Redundant code of the type that cannot be
excited according to the current specifications, but could possibly be needed under exceptional
circumstances, should be tested by the programmers providing it. They should also provide test
cases for these situations (if possible). Alternatively they should provide a written explanation of
the cirumstances and reasons for including that particular code. The golden program gold3vl.i, for
example has 5 blocks handling display of extremal input acceleration values (> 10g) which are not
tested by the current acceptance data set since such large input values are outside the conversion
range of the provided equations.

The coverage figures should be considered only in the last stage of the acceptance testing, i.e.
when all.dat cases have been passed without a failure, and all the corrections requests have been

implemented (e.g. after the final regression pass through all.dat).

The ESV data set is further described in the ReadMe_esv file, and the random data sets are

described in the ReadMe_random file.

v

NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CS C. (DFM,MAV,AMP,SRV)/April-89 47

Fault-Tolerant Software Experiment
THE ESV DATA FOR THE ACCEPTANCE TESTING

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)
RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCS U.CSC/05.Mar-87

ESV-I Set

The data file esv.dat contains 796 extremal and special (ESV) test cases. The test cases were
designed to provide full functional coverage of the RSDIMU specifications v3.2/10-Feb-87.

The test cases are based on an initial random case which was then modified step by step to check a
particular function and/or option. In the following overview of the ESV data only the principal
features of the data sub-classes are given, along with the principal variables that were changed at
any one time. Changes are given with respect to a base test case (usually #I). Listing of all or some
of the test cases can be obtained by running accept/fts_listdata. Difference between test cases may
be examined using fts_diff.

. A general random test case, DMODE=0 (RTI, foofl.dat), votecontrol=0. Checks
that all the voters are off. _

2-7. Test cases checking voter placement. Voters in the fls_harness are activated via
VOTECONTROL one at the time. VOTECONTROL activation order 1, 3, 2, 4, 8
16.
Votecontrol and their activation results are detailed below:
1 : Sets the Linnoise values of first 4 sensors to true.
3 : Sets Linoffset value of first sensor to 0.0
2 : Sets linout value of first sensor to BADDAT;
4 : Sets SYSSTATUS to false.

8 : sets the estimate values of acceleration values to large values of 99999.0
16 : Sets garbage values in display output values.

8 General test case, (base 1) DMODE = 88.

9-19 base = case #I, systematic changes in DMODE testing for principal
display modes (0,21-24,31-33,1,2,99). Check for various display modes which do
valid displays; and the boundary display modes.

20-27 Check for mod 4096 (all chans), base = #1, offraw: selected values are
increased with 4096 or 8192 to check if only lower order bits are being used.

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different "blank"
displays, specific failure display formats, and failures of one sensor (28-37), whole
faces (two sensors, 38-43), and various combinations of four failing sensors (44-
52), with one instance of eight failed sensors (50). The sensors are failed on input,
to check for I display.

53-85 base = #1, random activation of different display modes continues (to ultimately test
all values 0-99 by the end of the ESV set). Noise on calibration (OFFRAW) in
steps of+/- 6, +/-12, +/- 18 and +/- 24.
Case 57 test has LINSTD=8, DMODE= 1 and noise on calibration channel 1 of +/-
24 (8x3=24). Also checked are the display failure formats for LINNOISE values,
and the correct use of variable LINSTD, and correct computation of calibration
noise levels. 6 and 24 were chosen because these were the boundary cases for

m
V

W

W

W

U

NASA/NAG- 1-667/Annual Report/5.2/'NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 48

noisiness for the linstd values chosen.

87-110 changes in LINSTD (9, 2,1 with +/- 24 on i/p channels) to check correct use of LINSTD
variable and sensitivity of the calibration procedure.

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of failures on
input, noise and edgevector failures, base = #1. Values in RAWLIN are so changed
as to reflect an assured failure in edgevector test, so that there are no ambiguities
left. The values of DMODE are again chosen to test the display failure format. The
failures are combined with failures on input, to see if the edgevector tests are

properly employed.

150-151 Large changes in misalign [i,6] field, only the sixth axis was chosen for contamination
because according to the latest specifications that is the only angle not used in the
rsdimu procedure. It use significantly changes output values only if its value is
much larger than normal. Changes in the values of other angles will not provied
new information.

152-392. Test cases checking for the minimal sensor noise levels for failure declaration.
Cases 152-365 no prior failures.
Cases 366-392 prior failures on one and two faces.These test cases test the
sensitivity requirements that all three edges fail the edgevector testi before a failure
is declared. False alarms are raised when only one or two edges fail. The normal
value for the triplet threshold is 49 counts away from the correct figure for no prior
failures on the rsdimu. The threshold values will change with the number and place

of previous failures.

393-796 CRA proposed test cases with various combinations of sensors failed on input and
up to one additional sensor failed in the edge vector test. 56 test cases with 1 sensor
failed on input. 168 cases with two sensors failed on input. 120 cases with 3
sensors failed on input. 30 cases with 4 sensors failed on input. 8 cases with 7
sensors failed on input, and the rest are other combinations.

More detailed information about the ESV test cases can be obtained by displaying the differences
between a chosen base case (#1 usually) and a series of other test cases. Utility shell script fts...diff,
based on the UNIX diff processor, is provided for this purpose. By executing fts_diff esv.dat
esvdiff 115 123 1

you can obtain, for example, in file esvdiff differences in the input values of cases 115 to 123 with
respect to test case #1 of the data file esv.dat.

The CRA document regarding choice of random and ESV test cases was provided as a separate
item (not in electronic form) with release 2.0 of RSDIMU-ATS.

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.C SC.(DFM,MAV,AMP,SRV)/April-89 49

Fault-Tolerant Software Experiment
THE RANDOM DATA FOR THE ACCEPTANCE TESTING

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)
RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

This set of 400 random test cases for rsdimu code is provided primarily for the purpose of

estimating the lower limit on the reliability of the tested code, and as a check on the completeness
of the ESV test cases. The test cases are completely independent, and no attempt was made to

mimic a flight trajectory and the associated time correlation among the input variable values.
Therefore any cumulative effects linked to time correlation or auto- correlation remain untested,
here and in the extremal and special value (esv.dat) set.

The random data axe provide in two sub-sets: randomNCSU.dat and randomCRA.dat.

randomNCSU.dat (RANDOM-I profile)

Within the employed sampling domain the distribution of the generated input values is essentially
fiat. It contains 200 test cases.

In all cases the random data were generated using the random number generator provided with the

Pascal comiler (pc, UNIX/Ultrix). Details of the mapping from the random numbers into the actual
input variables are given below. More details wiU be supplied on request. The part of the code used
to generate random input values is also enclosed (as fts_NCSUzzrand.i), and it derives in part
from the RTI random test harness (September 85).

The input variables randomly sampled, or computed on the basis of randomly sampled values are:
offraw, linfailin, rawlin, misalign, normface, temp, phiv, thetav, psiv, phi, thetai, psii, dmode,

linnoise, linfailout, scale0,1,2, obase, linstd and nsigt.

A more thorugh understanding of the random generation process and of the resulting input prof'des

can be gained by studying the fts_NCSUzzrand.i code.

The random set, randomNCSU.dat, consists of two hundred random test cases stratified into two
sub-sets. The first one hundred test cases (RANDOM-Ia) have the noise on sensors (rawlin)

boosted by 200 counts everytime linfailout for a sensor is true. Thus the sensor noise level is
guaranteed to exceed the sensitivity threshold of about 50 counts and the sensor should be
recognized as failed. The second one hundred test cases (RANDOM-Ib) have the noise added as
a uniform distribution between 1 and maxnoise- 1 counts, and at half the uniform frequency for 0
and maxnoise, the latter value having been read in by the driver program. In this particular case
maxnoise was 110, therefore the added noise was symmetrically centered around the threshold
value of 55 counts.

It is important to note that random test cases are intended to run after all ESV test cases have been
successfully negotiated. There are special situations and combinations of variable values that are
covered in ESV test cases and not covered by the sampling domain used to generate present
random test cases. Our experience with the random testing of rsdimu code is that the sensitivity of
the random test cases to errors is very low. Unless very detailed partitioning is employed (better to
use ESV cases in that case) detection capabilities of the random test cases to distinct errors saturate

extremely quickly. After 2 to 10 random test cases the same errors are usually detected over and

over again (if not removed). Once past 100 random test cases detection of new, different, errors
becomes an almost negligible event, unless the random sampling profile is changed and tuned to
the character of the already detected faults, or partitions not previously covered are sampled.

W

NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 50

= =

For all practical purposes the two sets of 100 test cases, are a single random set of 200 test cases,
which if executed successfully, provides Us with a lower limit for the rsdimu reliability (at the 95%
confidence level) of about 0.985.

initial random seed for 1st 100 cases is: 777
initial random seed for 2nd 100 cases is: 1234567890

randomCRA.dat (RANDOM-II nrofile)

Thesecondsub-set, randCRA.dat, wasgenerated onthebasisofthe CRAdocumentTM8602/26-

Aug-86.

The CRA random test cases are generated with the specifications provided in the CRA documents
(especially for PHIV, PSIV and THETAV, NSIGT = 2..7 etc). The calibration noise is normally
distributed, and the number of noisy sensors during calibration is exponentially distributed with a
parameter of 0.18. The edge vector test can fail one additional sensor, with random noise of upto
200 counts. No sensors fail on input. Generation details can be found in fts_CRAzzrand.i

initial random seed is: 987654321

For all practical purposes the two sets of 200 test cases, are a single random set of 400 test cases,
which if executed successfully, provides us with a lower limit for the rsdimu reliability (at the 95%

confidence level) of about 0.992.

During the generation of the random test cases care is taken to examine the obtained data and to
eliminate cases where more than one sensor fails in flight.

V

NASA/NAG-1-667/Annual Repor t/5.2/NC SU.CS C.(DFM,MAV,AMP,SRV)/April-89 51

Fault-Tolerant Software Experiment
THE GOLDEN DISPLAY AND RSDIMU CODES

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCS U.CSC/05-Mar-87

There are 2 files in this directory viz. display.i, and gold3vl.i The sources correspond to
specification version v3.2/10-Feb-87,

display.i contains the display module extracted from the gold program. It has been extensively
tested as a stand alone module, and gives results in accordance with the specifications v3.2. It does
not need any special declarations in the main program except for those which are in the RSDIMU

procedure assumed to be globally available (only the type declarations.) To use this procedure just
use standard #include compiler option, and the calling format

display (DISMODE, DISUPPER, DISLOWER);

Use of the golden rsdimu follows the same rules as use of any other rsdimu code, and is fully
explained in the specs (see also certify/driver.p).

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.CS C.(DFM,MAV,AMP,SRV)/April-89 52

Appendix IV

Code Coverage

Tables A4.1-A4.6 represent the coverage information for all the twenty final versions of the

RSDIMU software. Highest coverage is obtained from the ESV-I test cases, since they were

designed to cover all the aspects of computations involved. Because sets of only 1000 random cases

were used, random coverage fiugres are lower. The RSDIMU-I profile provides better coverage than

the more realistic RSDIMU-II data generation profile.

v

V

Program Number of cases
(Total blocks)

5 10 25 50 100 250 500 1000

NCSUA (513) 107/4 84/1 68/1 67/1 63/1 62/1 62/1 62/1
NCSUB (315) 82/3 59/2 49/1 45/1 44/1 44/1 44/1 44/1
NCSUC (544) 225/4 204/2 157/1 141/1 110/1 93/1 93/1 93/1
NCSUD (343) 60/2 47/1 34/0 34 34 34 34 34
NCSUE (475) 141/3 122/1 92/1 91/1 87/1 86/1 86/1 86/1

UCLAA (338) 82/3 67/1 58/1 54/1 51/1 50/1 50/1 50/1
UCLAB(368) 106/5 88/1 66/1 58/1 56/1 56/1 56/1 56/1
UCLAC(378) 90/6 62/1 46/1 43/1 42/1 42/1 42/1 42/1
UCLAD(432) 127/4 103/1 80/1 76/1 67/1 66/1 66/1 66/1
UCLAE(288) 75/3 60/3 44/2 44/2 44/2 44/2 44/2 44/2

UIUCA (263) 62/4 45/2 34/2 32/2 32/2 32/2 32/2 32/2
UIUCB (260) 54/4 38/0 33/0 32 32 32 32 32
UIUCC (261) 79/5 67/3 51/3 50/3 48/3 46/3 46/3 46/3
UIUCD(313) 91/2 82/1 64/1 62/1 59/1 59/1 59/1 59/1
UIUCE(351) 65/1 60/1 47/1 43/1 41/1 41/1 41/1 41/1

UVAA(469) 107/3 74/1 51/1 46/1 44/1 43/1 43/1 43/1
UVAB (436) 126/1 103/7 58/1 53/1 46/1 44/1 44/1 44/1
UVAC (918) 654/28 637/26 575/22 563/21 515/18 469/16 468/1 468/16
UVAD(319) 82/5 68/2 49/2 45/2 40/2 38/2 38/2 38/2
UVAE(501) 197/5 191/3 108/0 101 100 97 97 97

Table A4.1 Block/Procedures Non-Coverage Information for 1000 RANDOM-II cases. Values
shown are the blocks not executed during testing. Following '/' is the number of unexecuted

procedures. If there is no value for the Procedures count, it indicates that all procedures were
executed.

NASA/NAG-1-667/AnnualRepor t/5.2/NCS U.CSC.(DFM,MAV,AMP,SRV)/April-89 53

Program Number of cases

5 10 25 50 100 250 500 1000

NCSUA
NCSUB
NCSUC
NCSUD
NCSUE

79.14 83.62 86.74 86.93 87.71 87.91 87.91 87.91
73.96 81.26 84.44 85.71 86.03 86.03 86.03 86.03
58.63 62.50 71.13 74.08 79.77 82.90 82.90 82.90
82.50 86.29 90.08 90.08 90.08 90.08 90.08 90.08
70.31 74.31 80.63 80.84 81.68 81.89 81.89 81.89

UCLAA

UCLAB
UCLAC
UCLAD

UCLAE

75.73 80.17 82.84 84.02 84.91 85.20 85.20 85.20
71.19 76.08 82.06 84.23 84.78 84.78 84.78 84.78
76.19 82.53 87.83 88.62 88.88 88.88 88.88 88.88
70.60 78.47 81.48 82.40 84.49 84.72 84.72 84.72
73.95 79.16 84.72 84.72 84.72 84.72 84.72 84.72

UIUCA
UIUCB
UIUCC
UIUCD
UIUCE

76.42 82.88 87.07 87.83 87.83 87.83 87.83 87.83
79.23 85.38 87.30 87.69 87.69 87.69 87.69 87.69
69.73 74.32 80.45 80.84 81.60 82.37 82.37 82.37
70.92 73.80 79.55 80.19 81.15 81.15 81.15 81.15
81.48 82.90 86.60 87.74 88.31 88.31 88.31 88.31

UVAA
UVAB
UVAC
UVAD
UVAE

77.18 84.22 89.12 90.19 90.61 90.83 90.83 90.83
71.10 76.37 86.69 87.84 89.44 89.90 89.90 89.90
28.75 30.61 37.36 38.67 43.89 48.91 49.01 49.01
74.29 78.68 84.63 85.89 87.46 88.08 88.08 88.08
60.67 61.87 78.44 79.84 80.03 80.63 80.63 80.63

Table A4.2 Block Coverage Information for 1000 RANDOM-II cases (percentage of blocks
covered).

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.C SC. (DFM,MAV,AMP,SRV)/April-89 54

Program Number of cases
(Total blocks)

5 10 25 50 100 250 500 796

Table

NCSUA (513) 168/13 148/9 87/0 32 28 22 22 22
NCSUB (315) 120/6 96/2 47/0 17 11 7 7 7
NCSUC (544) 249/5 221/3 165/1 102/0 96 83 83 83
NCSUD (343) 87/4 71/3 43/1 13/0 7 3 3 3
NCSUE(475) 163/3 148/3 106/1 72/1 67/1 54/1 54/1 54/1

UCLAA (338) 120/7 96/3 54/0 26 22 17 17 17
UCLAB (368) 152/10 118/4 69/0 23 16 14 14 14
UCLAC (378) 149/11 105/6 51/0 28 20 11 10 10
UCLAD (432) 185/12 157/7 96/0 49 44 26 23 23
UCLAE (288) 96/4 78/2 52/1 15/0 12 6 3 2

UIUCA(263) 78/7 63/5 34/1 17/1 14/1 8/1 8/1 8/1
UIUCB (260) 75[8 59/4 28/0 24/0 20 17 17 17
UIUCC (261) 93/7 84/5 55/2 26/2 23/2 16/2 16/2 16/2
UIUCD (313) 142/10 113/5 83/1 47/1 43/1 28/1 28/1 28/1
UIUCE(351) 79/3 64/2 49/1 27/1 26/1 16/1 10/0 10

UVAA(469) 158/5 114/3 73/1 34/1 28/1 11/1 11/1 11/1
UVAB (436) 161/14 141/11 89/6 40/6 36/6 11/0 11 11
UVAC (918) 717/31 699/29 648/27 422/11 394/10 314/6 181/0 51
UVAD(319) 102/7 91/5 65/2 42/2 41/2 26/2 15/2 14/2
UVAE (501) 252/10 238/8 218/6 80/3 75/3 48/0 20 12

A4.3 Block/Procedures Non-Coverage Information for 796 ESV-I cases (Actual values are

the blocks/procedures not executed during testing).

v

v

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 55

Program Number of cases

5 10 25 50 100 250 500 796

NCSUA
NCSUB
NCSUC
NCSUD
NCSUE

67.25 71.15 83.04 93.76 94.54 95.71 95.71 95.71
61.90 69.52 85.07 94.60 96.50 97.77 97.77 97.77

54.22 59.37 69.66 81.25 82.35 84.74 84.74 84.74
74.63 79.30 87.46 96.20 97.95 99.12 99.12 99.12
65.68 68.84 77.68 84.84 85.89 89.05 89,05 89.05

UCLAA
UCLAB
UCLAC
UCLAD
UCLAE

64.49 71.59 84.02 92.30 93.49 94.97 94.97 94.97
58.69 67.93 81.25 93.75 95.65 96.19 96.19 96.19
60.58 72.22 86.50 92.59 94.70 97.08 97.08 97.08
57.17 63.65 77.77 88.65 89.81 93.98 94.67 94.67
66.66 72.91 81.94 94.79 95.83 97.91 98.95 99.30

UIUCA
UIUCB
UIUCC
UIUCD
UIUCE

70.34 76.04 87.07 93.53 94.67 96.95 96.95 96.95
71.15 77.30 89.23 90.76 92.30 93.46 93.46 93.46
64.36 67.81 78.92 90.03 91.18 93.86 93.86 93.86

54.63 63.89 73..48 84.98 86.26 91.05 91.05 91.05
77.49 81.76 86.03 92.30 92.59 95.44 97.i5 97_15

UVAA
UVAB
UVAC
UVAD
UVAE

66.31 75.69 84.43 92.75 94.02 97.65 97.65 97.65
63.07 67.66 79.58 90.82 91.74 97.47 97.47 97.47
21.89 23.85 29.41 54.03 57.08 65.79 80.28 94.44
68.02 71.47 79.62 86.83 87.14 91.84 95.29 95.61
49.70 52.49 56.48 86.02 87.02 90.41 96.00 97.60

Table A4.4 Block Coverage Information for 796 ESV-I cases (percentage of blocks covered).

W

w

W

v

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 56

V

Program Number of cases
(Total blocks)

5 10 25 50 100 250 500 1000

NCSUA (513) 151/9 83/0 53 30 29 29 29 29
NCSUB (315) 93/2 56 36 20 19 19 19 19
NCSUC(544) 231/4 171/1 130/1 78 63 62 62 62
NCSUD (343) 73/2 32 21 6 6 6 6 6
NCSUE(475) 161/5 122/3 82/1 66/1 61/1 61/1 61/1 61/1

UCLAA (338) 95/4 66/2 42 24 22 22 22 22
UCLAB (368) 109/4 67 36 25 24 24 24 24
UCLAC (378) 101/6 46 26 16 14 14 14 14
UCLAD (432) 153/7 94 57 42 36 36 36 36
UCLAE (288) 86/3 50/1 23 13 9 9 9 9

UIUCA(263) 66/5 38/1 20/1 13/1 13/1 13/1 13/1 13/1
UIUCB (260) 57/4 31 21 19 19 19 19 19
UIUCC(261) 86/5 57/2 34/2 21/2 20/2 20/2 20/2 20/2
UIUCD (313) 109/5 78/1 46/1 32/1 32/1 32/1 32/1 32/1
UIUCE (351) 76/3 54/2 26/1 18/1 18/1 18/1 18/1 1811

UVAA(469) 125/3 80/1 33/1 18/1 15/1 15/1 15/1 15/1
UVAB (436) 150/17 85/6 34 20 18 18 18 18
UVAC (918) 676/27 607/22 452/15 317/7 252/5 252/5 252/5 252/5
UVAD(319) 97/6 64/3 44/2 36/2 33/2 33/2 33/2 33/2
UVAE (501) 248/8 179/3 87 56 38 38 38 38

Table A4.5Block/Procedures Non-Coverage Information for 1000 RANDOM-I cases (Actual
values are the blocks not executed during testing).

NASA/NAG- 1-667/Annual Rep or t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 57

Program Number of cases

5 10 25 50 100 250 500 1000

NCSUA
NCSUB
NCSUC
NCSUD
NCSUE

70.56 87,71 93,56 94.15 94,34 94,34 94,34 94.34
70,47 82,22 88,57 93,65 93,96 93.96 93.96 93.96
57.53 68,56 76,10 85,66 88,41 88,60 88,60 88.60

78,71 90,67 93.,87 98,25 98,25 98,25 98,25 98.25
66,10 74,31 82,73 86,10 87,15 87,15 87,15 87,15

UCLAA
UCLAB
UCLAC
UCLAD
UCLAE

71,89 80,47 87,57 92,89 93,49 93.49 93,49 93.49
70.38 81.79 90,21 93,47 94.02 94.02 94,02 94,02
73.28 87,83 93,12 95.76 96,29 96,29 96.29 96,29
64.58 78,24 86,80 90,27 91,66 91,66 91,66 91,66
70,13 82,63 92,01 95,48 96.87 96,87 96,87 96,87

UIUCA
UIUCB
UIUCC
UIUCD
UIUCE

74.90 85.55 92.39 95.05 95.05 95.05 95.05 95.05
78.07 88.07 91.92 92.69 92.69 92.69 92.69 92.69
67.04 78.16 86.97 91.95 92.33 92.33 92.33 92.33
65.17 75.07 85.30 89.77 89.77 89.77 89.77 89.77
78.34 84.61 92.59 94.87 94.87 94.87 94.87 94.87

UVAA
UVAB
UVAC
UVAD
UVAE

73.34 82.94 92.96 96.16 96.80 96.80 96.80 96.80
65.59 80.50 92.20 95.41 95.87 95.87 95.87 95.87
26.36 33.87 50.76 65.46 72.54 72.54 72.54 72.54
69.59 79.93 86.20 88.71 89.65 89.65 89.65 89.65
50.49 64.27 82.63 88.82 92.41 92.41 92.41 92.41

Table A4.6 Block Coverage Information for 1000 RANDOM-I cases (percentage of blocks
covered).

U

w

v

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 58

Appendix V

Faults

Table A5.1 Faults by programs

v

NCSUA : $2, $3/F2, $4, F14, F38.
NCSUB : $1, $2, $3/F2, $4, F1, F13, FI4.
NCSUC : S1, $2, $3/F2, $4, F1, F3, F4, F5, F14, M1.
NCSUD : S1, $2, $3/F2, $4, F1, F4, F6, FS, F9, F10, Fll, F13, M2, M6, M8.
NCSUE : S1, $2, $3/F2, $4, F4, F12, F12a, F13, F14, M3.
UCLAA : $2, $3/F2, $4, F13, F39, F40.
UCLAB : $4 (MAY be F14), FI, 1::4, F41/M5, F42.
UCLAC : $3/F2, $4, F1, F13, F14, F43, F44, F44a.
UCLAD : $2, $3/F2, $4, F1, F13, F14, F15, F16, F17, F19, F20, M4.
UCLAE : S1, $2, $4, F1, F13.
UIUCA : $4, F14, F45, F46, F47.

UIUCB : $3/F2, $4, Major changes in code triggering errors on each case.
UIUCC : $2, $3/F2, $4, F1, F4, F22, F23, F24, F26, F27.
UIUCD : $2, $3/F2, $4, F13, F48, F49, F50.
UIUCE : $2, $3/F2, $4, F1, F4, F51, F52.
UVAA : $3/F2, $4, F14, F28, F29, F36, F37, M5.
UVAB : $2, $3/F2, $4, F1, F14, F53, F54.
UVAC : S1, $2, $4, F1, F13, F31, F33, F35, M5, M7.
UVAD : $2, F1, F14, F55, F56, F57.
UVAE : S1, $4, F4, F58, F59, F60.

NASA/NAG- 1-667/Annual ReportI5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 59

Table A5.2 Classification of dissimilar (distinct) faults detected in the programs.

Actual Program Specification Implementation Modification

ncsua P1 0 1 -
ncsub P2 0 0 -
ncsuc P3 0 2 1
ncsud P4 0 5 3
ncsue P5 0 2 1

uclaa P6 0 2 -
uclab P7 0 2
uclac P8 0 3
uclad P9 0 5 1
uclae P10 0 0
uiuca P 11 0 3 -
uiucb P 12 0 4
uiucc P 13 0 5 0
uiucd P14 0 3
uiuce P 15 0 2 -
uvaa P 16 0 4 0
uvab P17 0 2
uvac P 18 0 3 1
uvad P19 0 3
uvae P20 0 3

w

w

V

NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 60

Table A5.3 Description of Simplex Faults

Fault Code Fault Description Probability

F3
F5
F6
F8
F9
F10
Fll
F12
F12a
F15

F16
F17
F19
F20
F22
F23
F24

F26
F27
F28
F29
F31
F33
F35
F36

F37
F38
F39
F40
F41
F42
F43
F44
F44a
F45
F46
F47
F48
F49

Does not isolate failed sensors properly.
Display of acceleration 31-34. (fatal error).
Numerical accuracy problem (conversion from ft. to m)
Miscalculation of bestest acceleration values.

Miscalculation of LINFAILOUT. (derivative of F2).

Display of acceleration wrong.
Display of hexadecimal values wrong.
Miscomputation of channel estimates.
Wrong values in display upper.
Improper isolation and detection of failed sensor
(derivative of F2).
Miscomputation of channel estimates, if a sensor fails.
Miscomputation of acceleration values.
Wrong values used for faulty channels.
Display of acceleration wrong.
Fatal run time error when displaying 0.0 acceleration.
Miscomputation of channel estimates.
Fatal run time error due to isolation of bad face.

(derivative of F2).
Fatal run time error during display.
Wrong values passed through disupper.
Miscomputation of acceleration display values.
same as F28, but at other place.
Fault in detecting failure of sensors.
Display values miscomputed in dsupper [3].
same as F33, at different place.
Does not subtract gravity vector while computing

LINOFFSET.

Subtracts gravity vector from estimated force.
Uses predefined value for constant G (32.0)
Miscomputation of channel estimates.
Miscomputation of acceleration values.
miscomputation of SIGMA values (also see M5).
Miscomputation of acceleration values.
miscomputation of channel estimates, if a sensor fails.
Miscomputation of LINFAILOUT values.
Miscomputation of LINOFFSET values.
Display errors. (may be more than one).
Miscomputation of channel estimates.
Miscomputation of LINOFFSET values.
Errors in display routines.
Miscomputation of acceleration values.

of Occurrence.

< 0.346
< 0.029
NA
1.00
< 0.24
< 0.016
< 0.021
< 0.24
< 0.081
< 0.24

< 0.074
< 0.42
< 0.321
< 0.017
< 0.009

< 0.24

< 0.018
< 0.342
< 0.031
< 0.006
< 0.489
< 0.043
< 0.012
1.0

1.0
1.0
< 0.562
< 0.559
< 0.389
< 0.513
< 0.024
< 0.089
< 0.991
NA
< 0.554
< 0.876
NA
< 0.774

continued

NAS A/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89 61

Table A5.3 (continued) Description of dissimular faults.

Fault Code Fault Description

F50
F51
F52

F53
F54
F55
F56
F57
F58
F59
F60
F61- F64

miscomputation of LINOFFSET.
Display error.
rniscomputation of estimates.
display error.
miscomputation of LINOFFSET
miscomputation of channel estimates.
miscomputation of acceleration values.
wrong values used for G.
Display error.
miscomputation of channel estimates.
Miscomputation of SIGMA.

Major overhauls in uiucb code in key procedures

Probability of Occurrence.

< 0.818
NA
< 0.659
NA
< 0.899
< 0.587
< 0.619
1.0
NA
< 0.665
< 0.389
1.0

Table A5.4 Description of Modification Faults

Fault Code
M1
M2
M3
M4
M5
M7
M6
M8

Description
Error in display
Display round off error
SYSSTATUS faulty when previous sensor failure
Display of acceleration faulty
Computation of Sigma
Miscomputation of Sigma
Does not lead to any additional error
Conversion of LINSTD to engineering units

v

v

NAS A/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89

Appendix VI

62

Fault Detection

Table A6.1 The order of detection of faults by ESV-I cases.

PROGRAM FAULT CASE# FAILURES

v

NCSUA

NCSUB

NCSUC

NCSUD

F38 #1

F13
$2
F14
$1

$3/F2

$2
F14
F5
F4
F3
$1
$3

F6
F13
$2
Fll
F10
F4

FS/M10
S1
F9
$3

#4
#10
#20
#150
#160

#10
#20
#42
#5O
#55
#150
#382

NOT TRIGGERED
#4
#10
#28
#45
#50
#112
#150
#160
#160

NCSUE F13
$2
F14
F12a
F12
F4
$1
$3

#4
#10
#20
#46
#46
#5O
#150
#155

continued

NASA/NAG- 1-667/Annual Rep or t/5.2/NC SU.CS C.(DFM,MAV,AMP,S RV)/April-89

Table A6.1 (contlnued-1) The order of detection of faults by ESV-I cases.

PROGRAM FAULT CASE# FAILURES

63

UCLAA

UCLAB

F13 #4
$2 #10
F39 #46
F40 #112
$3 #160

F13 #4
F14 #20
F43 #46

$3/F2 #155
F44 #160
F44a #160

UCLAD F20 #1
F19 #2
F13 #4
$2 #10
F14 #20
F17 #30
F16 #44
F15 #114
$3/F2 #160

UCLAE

UIUCA

UIUCB

UIUCC

F13 #4
$2 #10
S1 #150

F14 #20
F45 #28
F46 #46
F47 #160

F61 #1

F22,23
$2
F26
F27
F4
$3
F24

NOT TRIGGERED
#10
#15
#30
#50
#155
#155

continued

m
W

lw

NASA/NAG- 1-667/Annual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89

Table A6.1 (continued-2) The order of detection of faults by ESV-I cases.

PROGRAM FAULT CASE# FAILURES

64

v

UIUCD

UIUCE

UVaA

UVaB

UVaC

UVaD

UVaE

F13 #4
$2 #10
F48 #21
F49 #112
$3 #160
F50 #160

$2 #10
F51 #28
F52 #46
F4 #50
$3 #155

F36 #1

$2 #10
f14 #20
f53 #28
$3/F2 #155
F54 #160

F31
F13
$2
F35
F33
$1

F57

F60
F58
F59
F4
$1

NOT TRIGGERED
#4
#10
#12
#15
#150

#1

NOT TRIGGERED
#28
#46
#50
#150

NASA/NAG-1-667/AnnualRepor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April-89

Table A6.2 The order of detection of faults by 500 cases of type RANDOM-Ib.

PROGRAM FAULT CASE# FAILURES

65

NCSUA

NCSUB

NCSUC

NCSUD

F38

$3 #5
F2 #5

F5 #2
F3 #3
$3/F2 #69

F10 #5
$3/F2 #5
F9 #5
Fll #7

NCSUE F129 #2

UCLAA

UCLAB

UCLAC

UCLAD

F40 #1
F39 #3

$3/F2 #5

F42 #1

F44a #1
F43 #5

$3/F2 #5
F44 #7

F/16,20 #3
F19,17 #5
$3/F2 #5

UCLAE $2 #1

continued

V

W

II

V

v
NASA/NAG- 1-667/Annual Report/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/April'89 66

Table A6.2 (continued) The order of detection of faults by 500 cases of type RANDOM-Ib.

PROGRAM FAULT CASE# FAILURES

v

UIUCA

UIUCB

UIUCC

UIUCD

UIUCE

UVaA

UVaB

UVaC

UVaD

UVaE

F45 #2
F47 #2
F46 #3

F61 #1

$3/F2 #5
F23 #5
F27 #7

$2 #1
F48 #3

$3/F2 #5
F49 #5
F50 #5

F52 #1

F36 #1

$2 #1
F53 #3

$3/F2 #5
F54 #5

F33 #7

F57 #1

F58 #2
F59 #3

v

NASA/NAG- 1-667/Ann ual Repor t/5.2/NCSU.CSC.(DFM,MAV,AMP,SRV)/ApriI_89 67

Table A6.3 The number of faults detected by ESV and 500 RANDOM-Ib cases.

Actual Program ESV-I 500 RANDOM-Ib Total

ncsua P1 4 2 4
ncsub P2 5 1 6
ncsuc P3 7 3 8
ncsud P4 9 3 11
ncsue P5 8 3 8
uclaa P6 5 3 5
uclab P7 3 1 4
uclac P8 6 4 7
uclad P9 9 35 10
uclae PIO 3 1 4
uiuca P11 4 3 4
uiucb P12 4+ 1+ 4+
uiucc P 13 6 3 9
uiucd P14 6 5 6
uiuce P15 5 3+ 6

uvaa P 16 6 1 6
uvab P17 5 4 6
uvac P 18 5 1 7
uvad P19 1+,(6)? 1 6
uvae P20 4 2 5

